Matches in SemOpenAlex for { <https://semopenalex.org/work/W1042921601> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W1042921601 abstract "A key challenge in a surveillance system is the object detection task. Object detection in general is a non-trivial problem. A sub-problem within the broader context of object detection which many researchers focus on is face detection. Numerous techniques have been proposed for face detection. One of the better performing algorithms is proposed by Viola et. al. This algorithm is based on Adaboost and uses Haar features to detect objects. The main reason for its popularity is very low false positive rates and the fact that the classifier network can be trained for any detection task. The use of Haar basis functions to represent key object features is the key to its success. The basis functions are organized as a network to form a strong classifier. To detect objects, this technique divides each input image into non-overlapping sub-windows and the strong classifier is applied to each sub-window to detect the presence of an object. The process is repeated at multiple scales of the input image to detect objects of various sizes. In this thesis we propose an object detection system that uses object segmentation as a preprocessing step. We use Mixture of Gaussians (MoG) proposed by Staffer et. al. for object segmentation. One key advantage with using segmentation to extract image regions of interest is that it reduces the number of search windows sent to detection task, thereby reducing the computational complexity and the execution time. Moreover, owing to the computational complexity of both the segmentation and detection algorithms we used in the system, we propose hardware architectures for accelerating key computationally intensive blocks. In this thesis we propose hardware architecture for MoG and also for a key compute intensive block within the adaboost algorithm corresponding to the Haar feature computation." @default.
- W1042921601 created "2016-06-24" @default.
- W1042921601 creator A5070099561 @default.
- W1042921601 date "2009-11-01" @default.
- W1042921601 modified "2023-09-27" @default.
- W1042921601 title "Speeding up Adaboost object detection with motion segmentation and Haar feature acceleration" @default.
- W1042921601 hasPublicationYear "2009" @default.
- W1042921601 type Work @default.
- W1042921601 sameAs 1042921601 @default.
- W1042921601 citedByCount "2" @default.
- W1042921601 countsByYear W10429216012012 @default.
- W1042921601 countsByYear W10429216012018 @default.
- W1042921601 crossrefType "dissertation" @default.
- W1042921601 hasAuthorship W1042921601A5070099561 @default.
- W1042921601 hasConcept C123134398 @default.
- W1042921601 hasConcept C124504099 @default.
- W1042921601 hasConcept C141404830 @default.
- W1042921601 hasConcept C153180895 @default.
- W1042921601 hasConcept C154945302 @default.
- W1042921601 hasConcept C182521987 @default.
- W1042921601 hasConcept C2776151529 @default.
- W1042921601 hasConcept C31510193 @default.
- W1042921601 hasConcept C31972630 @default.
- W1042921601 hasConcept C34736171 @default.
- W1042921601 hasConcept C41008148 @default.
- W1042921601 hasConcept C4641261 @default.
- W1042921601 hasConcept C71681937 @default.
- W1042921601 hasConcept C89600930 @default.
- W1042921601 hasConcept C95623464 @default.
- W1042921601 hasConceptScore W1042921601C123134398 @default.
- W1042921601 hasConceptScore W1042921601C124504099 @default.
- W1042921601 hasConceptScore W1042921601C141404830 @default.
- W1042921601 hasConceptScore W1042921601C153180895 @default.
- W1042921601 hasConceptScore W1042921601C154945302 @default.
- W1042921601 hasConceptScore W1042921601C182521987 @default.
- W1042921601 hasConceptScore W1042921601C2776151529 @default.
- W1042921601 hasConceptScore W1042921601C31510193 @default.
- W1042921601 hasConceptScore W1042921601C31972630 @default.
- W1042921601 hasConceptScore W1042921601C34736171 @default.
- W1042921601 hasConceptScore W1042921601C41008148 @default.
- W1042921601 hasConceptScore W1042921601C4641261 @default.
- W1042921601 hasConceptScore W1042921601C71681937 @default.
- W1042921601 hasConceptScore W1042921601C89600930 @default.
- W1042921601 hasConceptScore W1042921601C95623464 @default.
- W1042921601 hasLocation W10429216011 @default.
- W1042921601 hasOpenAccess W1042921601 @default.
- W1042921601 hasPrimaryLocation W10429216011 @default.
- W1042921601 hasRelatedWork W1533368116 @default.
- W1042921601 hasRelatedWork W1550641785 @default.
- W1042921601 hasRelatedWork W1970212603 @default.
- W1042921601 hasRelatedWork W1979360336 @default.
- W1042921601 hasRelatedWork W2007466936 @default.
- W1042921601 hasRelatedWork W2009549839 @default.
- W1042921601 hasRelatedWork W2022533693 @default.
- W1042921601 hasRelatedWork W2041379928 @default.
- W1042921601 hasRelatedWork W2063411532 @default.
- W1042921601 hasRelatedWork W2071044722 @default.
- W1042921601 hasRelatedWork W2098780951 @default.
- W1042921601 hasRelatedWork W2109609085 @default.
- W1042921601 hasRelatedWork W2130560704 @default.
- W1042921601 hasRelatedWork W2147474239 @default.
- W1042921601 hasRelatedWork W2157060558 @default.
- W1042921601 hasRelatedWork W2292957941 @default.
- W1042921601 hasRelatedWork W2604101178 @default.
- W1042921601 hasRelatedWork W2763250912 @default.
- W1042921601 hasRelatedWork W2913370212 @default.
- W1042921601 hasRelatedWork W2991031894 @default.
- W1042921601 isParatext "false" @default.
- W1042921601 isRetracted "false" @default.
- W1042921601 magId "1042921601" @default.
- W1042921601 workType "dissertation" @default.