Matches in SemOpenAlex for { <https://semopenalex.org/work/W105289811> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W105289811 endingPage "204" @default.
- W105289811 startingPage "181" @default.
- W105289811 abstract "In the literature of multiple regression models, the customary analysis is the estimation and hypothesis testing about the parameters of the model. However, in various applications, it is utmost important for a practitioner to predict the future values of the response variable. The most common way to tackle with such a problem is the use of Best Linear Unbiased Predictors (BLUP) discussed by Theil (1971), Hendersion (1972) and Judge, Griffiths, Hill, Lütkepohl and Lee (1985). for further details of the BLUP one can see Toyooka (1982) and Kariya and Toyooka (1985). The Stein-rule predictors and the shrinkage rules based on Stein-rule technique to forecast have also got considerable attention of the researchers in recent past. Copas (1983) considered the prediction in regression using a Stein-rule predictor. Copas and Jones (1987) applied the regression shrinkage technique for the prediction in an autoregressive model. Zellner and Hong (1989) used Bayesian shrinkage rules to forecast international growth rate. Hill and Fomby (1992) analyzed the performance of various improved estimators under an out-of-sample prediction mean square error criterion. Gotway and Cressie (1993) considered a class of linear and non-linear predictors in the context of a general linear model with known disturbances covariance matrix and observed that, under the quadratic loss function, the proposed class of predictors has uniformly smaller risk than the BLUP. Khan and Bhatti (1998) obtained the prediction distribution for a set of future responses from a multiple linear regression model following an equi-correlation structure. Tuchscheres, Herrendorfer and Tuchscheres (1998) proposed Estimated Best Linear Unbiased Predictor (EBLUP) with the help of a designated simulation experiment using MSE and GSD technique for evaluation. The present paper deals with the problem of prediction based on shrinkage estimator in a general linear model with nonspherical disturbances. A general family of predictors for the composite target function, considered by Shalabh (1995), has been proposed and its asymptotic distribution has been derived employing large sample asymptotic theory. The risk based on quadratic loss structure of the proposed family of predictors has been obtained. The performance of proposed family of predictors is compared with the feasible Best Linear Unbiased Predictor (FBLUP) under the MSE matrix criterion and Quadratic loss function criterion. Further, we obtain the expression for an estimator for the MSE matrix of the proposed predictor. The results of a numerical simulation have been presented and discussed." @default.
- W105289811 created "2016-06-24" @default.
- W105289811 creator A5005101531 @default.
- W105289811 creator A5016726252 @default.
- W105289811 creator A5074886545 @default.
- W105289811 date "2008-01-01" @default.
- W105289811 modified "2023-09-29" @default.
- W105289811 title "Simultaneous Prediction Based on Shrinkage Estimator" @default.
- W105289811 cites W1971470736 @default.
- W105289811 cites W1987925235 @default.
- W105289811 cites W1994242199 @default.
- W105289811 cites W2010368771 @default.
- W105289811 cites W2019265960 @default.
- W105289811 cites W2028433965 @default.
- W105289811 cites W2034021029 @default.
- W105289811 cites W2035030101 @default.
- W105289811 cites W2038699275 @default.
- W105289811 cites W2056384711 @default.
- W105289811 cites W2089008608 @default.
- W105289811 cites W2112777767 @default.
- W105289811 cites W2159805100 @default.
- W105289811 doi "https://doi.org/10.1007/978-3-7908-2064-5_10" @default.
- W105289811 hasPublicationYear "2008" @default.
- W105289811 type Work @default.
- W105289811 sameAs 105289811 @default.
- W105289811 citedByCount "9" @default.
- W105289811 countsByYear W1052898112015 @default.
- W105289811 countsByYear W1052898112016 @default.
- W105289811 countsByYear W1052898112017 @default.
- W105289811 countsByYear W1052898112018 @default.
- W105289811 countsByYear W1052898112022 @default.
- W105289811 crossrefType "book-chapter" @default.
- W105289811 hasAuthorship W105289811A5005101531 @default.
- W105289811 hasAuthorship W105289811A5016726252 @default.
- W105289811 hasAuthorship W105289811A5074886545 @default.
- W105289811 hasConcept C102592046 @default.
- W105289811 hasConcept C103545067 @default.
- W105289811 hasConcept C105795698 @default.
- W105289811 hasConcept C149782125 @default.
- W105289811 hasConcept C152877465 @default.
- W105289811 hasConcept C154945302 @default.
- W105289811 hasConcept C159877910 @default.
- W105289811 hasConcept C163175372 @default.
- W105289811 hasConcept C165646398 @default.
- W105289811 hasConcept C166957645 @default.
- W105289811 hasConcept C185429906 @default.
- W105289811 hasConcept C191393472 @default.
- W105289811 hasConcept C205649164 @default.
- W105289811 hasConcept C2779343474 @default.
- W105289811 hasConcept C33923547 @default.
- W105289811 hasConcept C41008148 @default.
- W105289811 hasConcept C48921125 @default.
- W105289811 hasConcept C81917197 @default.
- W105289811 hasConceptScore W105289811C102592046 @default.
- W105289811 hasConceptScore W105289811C103545067 @default.
- W105289811 hasConceptScore W105289811C105795698 @default.
- W105289811 hasConceptScore W105289811C149782125 @default.
- W105289811 hasConceptScore W105289811C152877465 @default.
- W105289811 hasConceptScore W105289811C154945302 @default.
- W105289811 hasConceptScore W105289811C159877910 @default.
- W105289811 hasConceptScore W105289811C163175372 @default.
- W105289811 hasConceptScore W105289811C165646398 @default.
- W105289811 hasConceptScore W105289811C166957645 @default.
- W105289811 hasConceptScore W105289811C185429906 @default.
- W105289811 hasConceptScore W105289811C191393472 @default.
- W105289811 hasConceptScore W105289811C205649164 @default.
- W105289811 hasConceptScore W105289811C2779343474 @default.
- W105289811 hasConceptScore W105289811C33923547 @default.
- W105289811 hasConceptScore W105289811C41008148 @default.
- W105289811 hasConceptScore W105289811C48921125 @default.
- W105289811 hasConceptScore W105289811C81917197 @default.
- W105289811 hasLocation W1052898111 @default.
- W105289811 hasOpenAccess W105289811 @default.
- W105289811 hasPrimaryLocation W1052898111 @default.
- W105289811 hasRelatedWork W1982208048 @default.
- W105289811 hasRelatedWork W2017296751 @default.
- W105289811 hasRelatedWork W2069784436 @default.
- W105289811 hasRelatedWork W2072090478 @default.
- W105289811 hasRelatedWork W2343747089 @default.
- W105289811 hasRelatedWork W2439899683 @default.
- W105289811 hasRelatedWork W2562359147 @default.
- W105289811 hasRelatedWork W2624501724 @default.
- W105289811 hasRelatedWork W2788277137 @default.
- W105289811 hasRelatedWork W593983468 @default.
- W105289811 isParatext "false" @default.
- W105289811 isRetracted "false" @default.
- W105289811 magId "105289811" @default.
- W105289811 workType "book-chapter" @default.