Matches in SemOpenAlex for { <https://semopenalex.org/work/W10648265> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W10648265 startingPage "27" @default.
- W10648265 abstract "Text categorization is the problem of automatically assigning text documents into one or more categories. Typically, an amount of labelled data, positive and negative examples for a category, is available for training automatic classifiers. We are particularly concerned with text classification when the training data is highly imbalanced, i.e., the number of positive examples is very small. We show that the linear support vector machine (SVM) learning algorithm is adversely affected by imbalance in the training data. While the resulting hyperplane has a reasonable orientation, the proposed score threshold (parameter b) is too conservative. In our experiments we demonstrate that the SVM-specific cost-learning approach is not effective in dealing with imbalanced classes. We obtained better results with methods that directly modify the score threshold. We propose a method based on the conditional class distributions for SVM scores that works well when very few training examples is available to the learner." @default.
- W10648265 created "2016-06-24" @default.
- W10648265 creator A5013478323 @default.
- W10648265 creator A5031104218 @default.
- W10648265 creator A5043874320 @default.
- W10648265 date "2003-04-01" @default.
- W10648265 modified "2023-09-26" @default.
- W10648265 title "Training text classifiers with SVM on very few positive examples" @default.
- W10648265 cites W145450961 @default.
- W10648265 cites W1594962278 @default.
- W10648265 cites W1618905105 @default.
- W10648265 cites W1979495886 @default.
- W10648265 cites W85350352 @default.
- W10648265 hasPublicationYear "2003" @default.
- W10648265 type Work @default.
- W10648265 sameAs 10648265 @default.
- W10648265 citedByCount "21" @default.
- W10648265 countsByYear W106482652012 @default.
- W10648265 countsByYear W106482652014 @default.
- W10648265 countsByYear W106482652016 @default.
- W10648265 crossrefType "journal-article" @default.
- W10648265 hasAuthorship W10648265A5013478323 @default.
- W10648265 hasAuthorship W10648265A5031104218 @default.
- W10648265 hasAuthorship W10648265A5043874320 @default.
- W10648265 hasConcept C119857082 @default.
- W10648265 hasConcept C121332964 @default.
- W10648265 hasConcept C12267149 @default.
- W10648265 hasConcept C153180895 @default.
- W10648265 hasConcept C153294291 @default.
- W10648265 hasConcept C154945302 @default.
- W10648265 hasConcept C2524010 @default.
- W10648265 hasConcept C2777211547 @default.
- W10648265 hasConcept C2777212361 @default.
- W10648265 hasConcept C2986744138 @default.
- W10648265 hasConcept C33923547 @default.
- W10648265 hasConcept C41008148 @default.
- W10648265 hasConcept C51632099 @default.
- W10648265 hasConcept C68693459 @default.
- W10648265 hasConceptScore W10648265C119857082 @default.
- W10648265 hasConceptScore W10648265C121332964 @default.
- W10648265 hasConceptScore W10648265C12267149 @default.
- W10648265 hasConceptScore W10648265C153180895 @default.
- W10648265 hasConceptScore W10648265C153294291 @default.
- W10648265 hasConceptScore W10648265C154945302 @default.
- W10648265 hasConceptScore W10648265C2524010 @default.
- W10648265 hasConceptScore W10648265C2777211547 @default.
- W10648265 hasConceptScore W10648265C2777212361 @default.
- W10648265 hasConceptScore W10648265C2986744138 @default.
- W10648265 hasConceptScore W10648265C33923547 @default.
- W10648265 hasConceptScore W10648265C41008148 @default.
- W10648265 hasConceptScore W10648265C51632099 @default.
- W10648265 hasConceptScore W10648265C68693459 @default.
- W10648265 hasLocation W106482651 @default.
- W10648265 hasOpenAccess W10648265 @default.
- W10648265 hasPrimaryLocation W106482651 @default.
- W10648265 hasRelatedWork W1540550673 @default.
- W10648265 hasRelatedWork W1549887922 @default.
- W10648265 hasRelatedWork W1551909886 @default.
- W10648265 hasRelatedWork W1660390307 @default.
- W10648265 hasRelatedWork W1751470192 @default.
- W10648265 hasRelatedWork W2005422315 @default.
- W10648265 hasRelatedWork W2023450550 @default.
- W10648265 hasRelatedWork W2063862666 @default.
- W10648265 hasRelatedWork W2103333826 @default.
- W10648265 hasRelatedWork W2118020653 @default.
- W10648265 hasRelatedWork W2139212933 @default.
- W10648265 hasRelatedWork W2148143831 @default.
- W10648265 hasRelatedWork W2149684865 @default.
- W10648265 hasRelatedWork W2150102617 @default.
- W10648265 hasRelatedWork W2156909104 @default.
- W10648265 hasRelatedWork W2363504268 @default.
- W10648265 hasRelatedWork W2376267013 @default.
- W10648265 hasRelatedWork W2391216667 @default.
- W10648265 hasRelatedWork W2435251607 @default.
- W10648265 hasRelatedWork W85350352 @default.
- W10648265 isParatext "false" @default.
- W10648265 isRetracted "false" @default.
- W10648265 magId "10648265" @default.
- W10648265 workType "article" @default.