Matches in SemOpenAlex for { <https://semopenalex.org/work/W106723786> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W106723786 abstract "Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestion. Hence, reducing the frequency of crashes assist in addressing congestion issues (Meyer, 2008). Analysing traffic conditions and discovering risky traffic trends and patterns are essential basics in crash likelihood estimations studies and still require more attention and investigation. In this paper we will show, through data mining techniques, that there is a relationship between pre-crash traffic flow patterns and crash occurrence on motorways, compare them with normal traffic trends, and that this knowledge has the potentiality to improve the accuracy of existing crash likelihood estimation models, and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash occurrence. K-Means clustering algorithm applied to determine dominant pre-crash traffic patterns. In the first phase of this research, traffic regimes identified by analysing crashes and normal traffic situations using half an hour speed in upstream locations of crashes. Then, the second phase investigated the different combination of speed risk indicators to distinguish crashes from normal traffic situations more precisely. Five major trends have been found in the first phase of this paper for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Moreover, the second phase explains that spatiotemporal difference of speed is a better risk indicator among different combinations of speed related risk indicators. Based on these findings, crash likelihood estimation models can be fine-tuned to increase accuracy of estimations and minimize false alarms." @default.
- W106723786 created "2016-06-24" @default.
- W106723786 creator A5013556907 @default.
- W106723786 creator A5044341587 @default.
- W106723786 creator A5062386426 @default.
- W106723786 date "2014-01-01" @default.
- W106723786 modified "2023-09-26" @default.
- W106723786 title "Traffic Safety Risks Trends and Patterns Analysis on Motorways" @default.
- W106723786 hasPublicationYear "2014" @default.
- W106723786 type Work @default.
- W106723786 sameAs 106723786 @default.
- W106723786 citedByCount "0" @default.
- W106723786 crossrefType "journal-article" @default.
- W106723786 hasAuthorship W106723786A5013556907 @default.
- W106723786 hasAuthorship W106723786A5044341587 @default.
- W106723786 hasAuthorship W106723786A5062386426 @default.
- W106723786 hasConcept C119857082 @default.
- W106723786 hasConcept C127413603 @default.
- W106723786 hasConcept C158739034 @default.
- W106723786 hasConcept C166957645 @default.
- W106723786 hasConcept C183469790 @default.
- W106723786 hasConcept C199360897 @default.
- W106723786 hasConcept C205649164 @default.
- W106723786 hasConcept C207512268 @default.
- W106723786 hasConcept C22212356 @default.
- W106723786 hasConcept C2779888511 @default.
- W106723786 hasConcept C38652104 @default.
- W106723786 hasConcept C41008148 @default.
- W106723786 hasConcept C73555534 @default.
- W106723786 hasConceptScore W106723786C119857082 @default.
- W106723786 hasConceptScore W106723786C127413603 @default.
- W106723786 hasConceptScore W106723786C158739034 @default.
- W106723786 hasConceptScore W106723786C166957645 @default.
- W106723786 hasConceptScore W106723786C183469790 @default.
- W106723786 hasConceptScore W106723786C199360897 @default.
- W106723786 hasConceptScore W106723786C205649164 @default.
- W106723786 hasConceptScore W106723786C207512268 @default.
- W106723786 hasConceptScore W106723786C22212356 @default.
- W106723786 hasConceptScore W106723786C2779888511 @default.
- W106723786 hasConceptScore W106723786C38652104 @default.
- W106723786 hasConceptScore W106723786C41008148 @default.
- W106723786 hasConceptScore W106723786C73555534 @default.
- W106723786 hasLocation W1067237861 @default.
- W106723786 hasOpenAccess W106723786 @default.
- W106723786 hasPrimaryLocation W1067237861 @default.
- W106723786 hasRelatedWork W1607623173 @default.
- W106723786 hasRelatedWork W175147115 @default.
- W106723786 hasRelatedWork W1996972463 @default.
- W106723786 hasRelatedWork W2508952991 @default.
- W106723786 hasRelatedWork W2591450388 @default.
- W106723786 hasRelatedWork W2613401201 @default.
- W106723786 hasRelatedWork W2775788404 @default.
- W106723786 hasRelatedWork W2781529943 @default.
- W106723786 hasRelatedWork W2889783507 @default.
- W106723786 hasRelatedWork W3011360057 @default.
- W106723786 hasRelatedWork W3088652854 @default.
- W106723786 hasRelatedWork W3138141188 @default.
- W106723786 hasRelatedWork W3190972852 @default.
- W106723786 hasRelatedWork W579836342 @default.
- W106723786 hasRelatedWork W587191452 @default.
- W106723786 hasRelatedWork W591280251 @default.
- W106723786 hasRelatedWork W611449341 @default.
- W106723786 hasRelatedWork W648782141 @default.
- W106723786 hasRelatedWork W773674465 @default.
- W106723786 hasRelatedWork W855529075 @default.
- W106723786 isParatext "false" @default.
- W106723786 isRetracted "false" @default.
- W106723786 magId "106723786" @default.
- W106723786 workType "article" @default.