Matches in SemOpenAlex for { <https://semopenalex.org/work/W10809924> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W10809924 endingPage "519" @default.
- W10809924 startingPage "511" @default.
- W10809924 abstract "Training a feed-forward neural network (FNN) is an optimization problem over continuous space. Back-propagation algorithm (BP) is the conventional and most popular gradient-based local search optimization technique. The major problem more often BP suffers is the poor generalization performance by getting stuck at local minima. The artificial bee colony (ABC) is one of the popular global optimization algorithms of swarm intelligence and is used to train the weights of the neural network, but it also suffers from slow convergence speed. Nevertheless, a hybrid algorithm by combining artificial bee colony and back-propagation (ABC-BP) is proposed to train the FNN. The results of the proposed algorithm are compared with hybrid real-coded genetic algorithms with back-propagation (GA-BP) to train the FNN using five benchmark datasets taken from the UCI machine learning repository. The simulation results indicate that ABC-BP hybrid algorithm gives promising results in terms of significantly improved convergence rate and classification rate. Hence, the proposed algorithm can be efficiently used for training the FNN." @default.
- W10809924 created "2016-06-24" @default.
- W10809924 creator A5019566174 @default.
- W10809924 creator A5069085396 @default.
- W10809924 creator A5091364871 @default.
- W10809924 date "2014-01-01" @default.
- W10809924 modified "2023-10-14" @default.
- W10809924 title "Training a Feed-Forward Neural Network Using Artificial Bee Colony with Back-Propagation Algorithm" @default.
- W10809924 cites W1498436455 @default.
- W10809924 cites W1971259134 @default.
- W10809924 cites W1980480036 @default.
- W10809924 cites W1996688253 @default.
- W10809924 cites W2133218851 @default.
- W10809924 cites W2143560894 @default.
- W10809924 cites W2144317842 @default.
- W10809924 cites W4256460822 @default.
- W10809924 doi "https://doi.org/10.1007/978-81-322-1665-0_49" @default.
- W10809924 hasPublicationYear "2014" @default.
- W10809924 type Work @default.
- W10809924 sameAs 10809924 @default.
- W10809924 citedByCount "10" @default.
- W10809924 countsByYear W108099242015 @default.
- W10809924 countsByYear W108099242017 @default.
- W10809924 countsByYear W108099242019 @default.
- W10809924 countsByYear W108099242020 @default.
- W10809924 countsByYear W108099242021 @default.
- W10809924 countsByYear W108099242023 @default.
- W10809924 crossrefType "book-chapter" @default.
- W10809924 hasAuthorship W10809924A5019566174 @default.
- W10809924 hasAuthorship W10809924A5069085396 @default.
- W10809924 hasAuthorship W10809924A5091364871 @default.
- W10809924 hasConcept C11413529 @default.
- W10809924 hasConcept C119487961 @default.
- W10809924 hasConcept C119857082 @default.
- W10809924 hasConcept C127162648 @default.
- W10809924 hasConcept C13280743 @default.
- W10809924 hasConcept C134306372 @default.
- W10809924 hasConcept C154945302 @default.
- W10809924 hasConcept C155032097 @default.
- W10809924 hasConcept C162324750 @default.
- W10809924 hasConcept C185798385 @default.
- W10809924 hasConcept C186633575 @default.
- W10809924 hasConcept C205649164 @default.
- W10809924 hasConcept C2777303404 @default.
- W10809924 hasConcept C31258907 @default.
- W10809924 hasConcept C33923547 @default.
- W10809924 hasConcept C41008148 @default.
- W10809924 hasConcept C47702885 @default.
- W10809924 hasConcept C50522688 @default.
- W10809924 hasConcept C50644808 @default.
- W10809924 hasConcept C57869625 @default.
- W10809924 hasConcept C85617194 @default.
- W10809924 hasConcept C8880873 @default.
- W10809924 hasConcept C97133563 @default.
- W10809924 hasConceptScore W10809924C11413529 @default.
- W10809924 hasConceptScore W10809924C119487961 @default.
- W10809924 hasConceptScore W10809924C119857082 @default.
- W10809924 hasConceptScore W10809924C127162648 @default.
- W10809924 hasConceptScore W10809924C13280743 @default.
- W10809924 hasConceptScore W10809924C134306372 @default.
- W10809924 hasConceptScore W10809924C154945302 @default.
- W10809924 hasConceptScore W10809924C155032097 @default.
- W10809924 hasConceptScore W10809924C162324750 @default.
- W10809924 hasConceptScore W10809924C185798385 @default.
- W10809924 hasConceptScore W10809924C186633575 @default.
- W10809924 hasConceptScore W10809924C205649164 @default.
- W10809924 hasConceptScore W10809924C2777303404 @default.
- W10809924 hasConceptScore W10809924C31258907 @default.
- W10809924 hasConceptScore W10809924C33923547 @default.
- W10809924 hasConceptScore W10809924C41008148 @default.
- W10809924 hasConceptScore W10809924C47702885 @default.
- W10809924 hasConceptScore W10809924C50522688 @default.
- W10809924 hasConceptScore W10809924C50644808 @default.
- W10809924 hasConceptScore W10809924C57869625 @default.
- W10809924 hasConceptScore W10809924C85617194 @default.
- W10809924 hasConceptScore W10809924C8880873 @default.
- W10809924 hasConceptScore W10809924C97133563 @default.
- W10809924 hasLocation W108099241 @default.
- W10809924 hasOpenAccess W10809924 @default.
- W10809924 hasPrimaryLocation W108099241 @default.
- W10809924 hasRelatedWork W1950922027 @default.
- W10809924 hasRelatedWork W1977168471 @default.
- W10809924 hasRelatedWork W2082482750 @default.
- W10809924 hasRelatedWork W2132135756 @default.
- W10809924 hasRelatedWork W2259447226 @default.
- W10809924 hasRelatedWork W2294284812 @default.
- W10809924 hasRelatedWork W2349436282 @default.
- W10809924 hasRelatedWork W2375331795 @default.
- W10809924 hasRelatedWork W3170244987 @default.
- W10809924 hasRelatedWork W4210343097 @default.
- W10809924 isParatext "false" @default.
- W10809924 isRetracted "false" @default.
- W10809924 magId "10809924" @default.
- W10809924 workType "book-chapter" @default.