Matches in SemOpenAlex for { <https://semopenalex.org/work/W108164221> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W108164221 abstract "Latent Semantic Indexing (LSA) aims to reduce the dimensions of large Term-Document datasets using Singular Value Decomposition. However, with the ever expanding size of data sets, current implementations are not fast enough to quickly and easily compute the results on a standard PC. The Graphics Processing Unit (GPU) can solve some highly parallel problems much faster than the traditional sequential processor (CPU). Thus, a deployable system using a GPU to speedup large-scale LSA processes would be a much more effective choice (in terms of cost/performance ratio) than using a computer cluster. Due to the GPU s application-specific architecture, harnessing the GPU s computational prowess for LSA is a great challenge. We present a parallel LSA implementation on the GPU, using NVIDIA Compute Unified Device Architecture and Compute Unified Basic Linear Algebra Subprograms. The performance of this implementation is compared to traditional LSA implementation on CPU using an optimized Basic Linear Algebra Subprograms library. After implementation, we discovered that the GPU version of the algorithm was twice as fast for large matrices (1000x1000 and above) that had dimensions not divisible by 16. For large matrices that did have dimensions divisible by 16, the GPU algorithm ran five to six times fastermore » than the CPU version. The large variation is due to architectural benefits the GPU has for matrices divisible by 16. It should be noted that the overall speeds for the CPU version did not vary from relative normal when the matrix dimensions were divisible by 16. Further research is needed in order to produce a fully implementable version of LSA. With that in mind, the research we presented shows that the GPU is a viable option for increasing the speed of LSA, in terms of cost/performance ratio.« less" @default.
- W108164221 created "2016-06-24" @default.
- W108164221 creator A5041280931 @default.
- W108164221 creator A5042505817 @default.
- W108164221 date "2009-01-01" @default.
- W108164221 modified "2023-09-26" @default.
- W108164221 title "Massively Parallel Latent Semantic Analyzes using a Graphics Processing Unit" @default.
- W108164221 hasPublicationYear "2009" @default.
- W108164221 type Work @default.
- W108164221 sameAs 108164221 @default.
- W108164221 citedByCount "0" @default.
- W108164221 crossrefType "journal-article" @default.
- W108164221 hasAuthorship W108164221A5041280931 @default.
- W108164221 hasAuthorship W108164221A5042505817 @default.
- W108164221 hasConcept C111919701 @default.
- W108164221 hasConcept C121684516 @default.
- W108164221 hasConcept C139352143 @default.
- W108164221 hasConcept C154945302 @default.
- W108164221 hasConcept C173608175 @default.
- W108164221 hasConcept C190475519 @default.
- W108164221 hasConcept C21442007 @default.
- W108164221 hasConcept C2524010 @default.
- W108164221 hasConcept C2778119891 @default.
- W108164221 hasConcept C2779851693 @default.
- W108164221 hasConcept C33923547 @default.
- W108164221 hasConcept C41008148 @default.
- W108164221 hasConcept C49154492 @default.
- W108164221 hasConcept C68339613 @default.
- W108164221 hasConcept C75165309 @default.
- W108164221 hasConceptScore W108164221C111919701 @default.
- W108164221 hasConceptScore W108164221C121684516 @default.
- W108164221 hasConceptScore W108164221C139352143 @default.
- W108164221 hasConceptScore W108164221C154945302 @default.
- W108164221 hasConceptScore W108164221C173608175 @default.
- W108164221 hasConceptScore W108164221C190475519 @default.
- W108164221 hasConceptScore W108164221C21442007 @default.
- W108164221 hasConceptScore W108164221C2524010 @default.
- W108164221 hasConceptScore W108164221C2778119891 @default.
- W108164221 hasConceptScore W108164221C2779851693 @default.
- W108164221 hasConceptScore W108164221C33923547 @default.
- W108164221 hasConceptScore W108164221C41008148 @default.
- W108164221 hasConceptScore W108164221C49154492 @default.
- W108164221 hasConceptScore W108164221C68339613 @default.
- W108164221 hasConceptScore W108164221C75165309 @default.
- W108164221 hasLocation W1081642211 @default.
- W108164221 hasOpenAccess W108164221 @default.
- W108164221 hasPrimaryLocation W1081642211 @default.
- W108164221 hasRelatedWork W1152771551 @default.
- W108164221 hasRelatedWork W1860998085 @default.
- W108164221 hasRelatedWork W1967946179 @default.
- W108164221 hasRelatedWork W1974914484 @default.
- W108164221 hasRelatedWork W197505830 @default.
- W108164221 hasRelatedWork W2037637982 @default.
- W108164221 hasRelatedWork W2059434713 @default.
- W108164221 hasRelatedWork W2063257142 @default.
- W108164221 hasRelatedWork W2073142786 @default.
- W108164221 hasRelatedWork W2080480300 @default.
- W108164221 hasRelatedWork W2092999126 @default.
- W108164221 hasRelatedWork W2102650736 @default.
- W108164221 hasRelatedWork W2129170915 @default.
- W108164221 hasRelatedWork W2253983202 @default.
- W108164221 hasRelatedWork W2296265958 @default.
- W108164221 hasRelatedWork W2401971606 @default.
- W108164221 hasRelatedWork W2489787672 @default.
- W108164221 hasRelatedWork W3101434632 @default.
- W108164221 hasRelatedWork W3201295431 @default.
- W108164221 hasRelatedWork W52302056 @default.
- W108164221 isParatext "false" @default.
- W108164221 isRetracted "false" @default.
- W108164221 magId "108164221" @default.
- W108164221 workType "article" @default.