Matches in SemOpenAlex for { <https://semopenalex.org/work/W108350972> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W108350972 abstract "The optimization of composite laminates using ply orientation angle as a discrete variable provides an example to demonstrate an approach for discrete optimization under uncertainty. The use of ply orientation angles as continuous design variables becomes a non-viable approach from a manufacturing perspective. Optimization under uncertainty accounts for design variables and external parameters or factors with probabilistic distributions instead of fixed deterministic values; it enables problem formulations that might maximize or minimize an expected value while satisfying constraints using probabilities. For discrete optimization under uncertainty, a Monte Carlo sampling approach enables high-accuracy estimation of expectations but it also results in high computational expense. The genetic algorithm with a population-based sampling technique enables optimization with discrete variables at a lower computational expense than using Monte Carlo sampling for every fitness evaluation. Populationbased sampling uses fewer samples in the exploratory phase of the GA and a larger number of samples when ‘good designs’ start emerging over the generations. This sampling technique therefore reduces the computational effort spent on ‘poor designs’ found in the initial phase of the algorithm. The expected value of the fitness function and constraints of the designs in each generation are calculated in parallel to facilitate reduced wall-clock time. These fitness values are stored in a global array and updated with increase in sample size throughout the run. A customized stopping criterion is also developed for the GA with population-based sampling. The stopping criterion requires that the design with the minimum expected fitness value to have at least 99% constraint satisfaction and to have accumulated at least10000 samples. The average change in expected fitness values in the last ten consecutive generations is also monitored. The optimization problem used to demonstrate further developments of the GA with population-based sampling aims to reduce the expected weight of the composite laminate while treating the laminate’s fiber volume fraction and externally applied loads as uncertain quantities following normal distributions. The square fiber model is implemented to construct the stiffness matrix of the laminate with a fiber volume fraction sample. The constraints enforced include the probability of satisfying the Tsai-Hill failure criterion and the maximum strain limit. The calculations to establish the expected values of constraints and fitness values use the Classical Laminate Theory. The parallel fitness analyses are implemented via the Matlab Parallel Computing Toolbox and the Distributed Server Toolbox. The results from a deterministic optimization, optimization under uncertainty using Monte Carlo sampling and population – based sampling are studied. Also, the effectiveness of running the fitness analyses in parallel and the sampling scheme in parallel are investigated." @default.
- W108350972 created "2016-06-24" @default.
- W108350972 creator A5050881066 @default.
- W108350972 date "2013-01-01" @default.
- W108350972 modified "2023-09-27" @default.
- W108350972 title "Parallel genetic algorithm with population-based sampling approach to discrete optimization under uncertainty" @default.
- W108350972 cites W1535483053 @default.
- W108350972 cites W1595283676 @default.
- W108350972 cites W1965488904 @default.
- W108350972 cites W1989780744 @default.
- W108350972 cites W2002969529 @default.
- W108350972 cites W2143302244 @default.
- W108350972 cites W2147337062 @default.
- W108350972 cites W66167497 @default.
- W108350972 hasPublicationYear "2013" @default.
- W108350972 type Work @default.
- W108350972 sameAs 108350972 @default.
- W108350972 citedByCount "0" @default.
- W108350972 crossrefType "journal-article" @default.
- W108350972 hasAuthorship W108350972A5050881066 @default.
- W108350972 hasConcept C105795698 @default.
- W108350972 hasConcept C106131492 @default.
- W108350972 hasConcept C11413529 @default.
- W108350972 hasConcept C126255220 @default.
- W108350972 hasConcept C137836250 @default.
- W108350972 hasConcept C140779682 @default.
- W108350972 hasConcept C144024400 @default.
- W108350972 hasConcept C149923435 @default.
- W108350972 hasConcept C176066374 @default.
- W108350972 hasConcept C19499675 @default.
- W108350972 hasConcept C2908647359 @default.
- W108350972 hasConcept C31972630 @default.
- W108350972 hasConcept C33923547 @default.
- W108350972 hasConcept C41008148 @default.
- W108350972 hasConcept C49937458 @default.
- W108350972 hasConcept C8880873 @default.
- W108350972 hasConceptScore W108350972C105795698 @default.
- W108350972 hasConceptScore W108350972C106131492 @default.
- W108350972 hasConceptScore W108350972C11413529 @default.
- W108350972 hasConceptScore W108350972C126255220 @default.
- W108350972 hasConceptScore W108350972C137836250 @default.
- W108350972 hasConceptScore W108350972C140779682 @default.
- W108350972 hasConceptScore W108350972C144024400 @default.
- W108350972 hasConceptScore W108350972C149923435 @default.
- W108350972 hasConceptScore W108350972C176066374 @default.
- W108350972 hasConceptScore W108350972C19499675 @default.
- W108350972 hasConceptScore W108350972C2908647359 @default.
- W108350972 hasConceptScore W108350972C31972630 @default.
- W108350972 hasConceptScore W108350972C33923547 @default.
- W108350972 hasConceptScore W108350972C41008148 @default.
- W108350972 hasConceptScore W108350972C49937458 @default.
- W108350972 hasConceptScore W108350972C8880873 @default.
- W108350972 hasLocation W1083509721 @default.
- W108350972 hasOpenAccess W108350972 @default.
- W108350972 hasPrimaryLocation W1083509721 @default.
- W108350972 hasRelatedWork W1496327969 @default.
- W108350972 hasRelatedWork W1542437639 @default.
- W108350972 hasRelatedWork W1986522113 @default.
- W108350972 hasRelatedWork W2018416598 @default.
- W108350972 hasRelatedWork W2072702614 @default.
- W108350972 hasRelatedWork W2287149544 @default.
- W108350972 hasRelatedWork W2315689085 @default.
- W108350972 hasRelatedWork W2336159780 @default.
- W108350972 hasRelatedWork W2356880368 @default.
- W108350972 hasRelatedWork W2558150887 @default.
- W108350972 hasRelatedWork W2740728337 @default.
- W108350972 hasRelatedWork W2765840180 @default.
- W108350972 hasRelatedWork W2771176875 @default.
- W108350972 hasRelatedWork W2902352579 @default.
- W108350972 hasRelatedWork W2922142508 @default.
- W108350972 hasRelatedWork W2945130429 @default.
- W108350972 hasRelatedWork W3041658416 @default.
- W108350972 hasRelatedWork W3180794062 @default.
- W108350972 hasRelatedWork W48205870 @default.
- W108350972 hasRelatedWork W3112683714 @default.
- W108350972 isParatext "false" @default.
- W108350972 isRetracted "false" @default.
- W108350972 magId "108350972" @default.
- W108350972 workType "article" @default.