Matches in SemOpenAlex for { <https://semopenalex.org/work/W1093064829> ?p ?o ?g. }
- W1093064829 endingPage "371" @default.
- W1093064829 startingPage "361" @default.
- W1093064829 abstract "Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common type of dementia among older people. The number of patients with AD will grow rapidly each year and AD is the fifth leading cause of death for those aged 65 and older. In recent years, one of the main challenges for medical investigators has been the early diagnosis of patients with AD because an early diagnosis can provide greater opportunities for patients to be eligible for more clinical trials and they will have enough time to plan for future, medical and financial decisions. An established risk factor for AD is mild cognitive impairment (MCI) which is described as a transitional state between normal aging and AD patients. Hence an accurate and reliable diagnosis of MCI can be very effective and helpful for early diagnosis of AD. Therefore in this paper we present a novel and efficient method based on pseudo Zernike moments (PZMs) for the diagnosis of MCI individuals from AD and healthy control (HC) groups using structural MRI. The proposed method uses PZMs to extract discriminative information from the MR images of the AD, MCI, and HC groups. Two types of artificial neural networks, which are based on pattern recognition and learning vector quantization (LVQ) networks, were used to classify the information extracted from the MRIs. We worked with 500 MRIs from the database of the Alzheimer’s Disease Neuroimaging Initiative (ADNI 1 1.5T). The 1 slice of 500 MRIs used in this study included 180 AD patients, 172 MCI patients, and 148 HC individuals. We selected 50 percent of the MRIs randomly for use in training the classifiers, 25 percent for validation and we used 25 percent for the testing phase. The technique proposed here yielded the best overall classification results between AD and MCI (accuracy 94.88%, sensitivity 94.18%, and specificity 95.55%), and for pairs of the MCI and HC (accuracy 95.59%, sensitivity 95.89% and specificity 95.34%). These results were achieved using maximum order 30 of PZM and the pattern recognition network with the scaled conjugate gradient (SCG) back-propagation training algorithm as a classifier." @default.
- W1093064829 created "2016-06-24" @default.
- W1093064829 creator A5038465361 @default.
- W1093064829 creator A5043541546 @default.
- W1093064829 date "2015-10-01" @default.
- W1093064829 modified "2023-10-18" @default.
- W1093064829 title "A novel method for early diagnosis of Alzheimer’s disease based on pseudo Zernike moment from structural MRI" @default.
- W1093064829 cites W1964176984 @default.
- W1093064829 cites W1970240370 @default.
- W1093064829 cites W1974681848 @default.
- W1093064829 cites W1981357666 @default.
- W1093064829 cites W1983349993 @default.
- W1093064829 cites W1986014162 @default.
- W1093064829 cites W1986145325 @default.
- W1093064829 cites W1994104361 @default.
- W1093064829 cites W1995719450 @default.
- W1093064829 cites W2001090717 @default.
- W1093064829 cites W2004288989 @default.
- W1093064829 cites W2004421347 @default.
- W1093064829 cites W2014418634 @default.
- W1093064829 cites W2016246486 @default.
- W1093064829 cites W2027829736 @default.
- W1093064829 cites W2031983299 @default.
- W1093064829 cites W2040231435 @default.
- W1093064829 cites W2044151123 @default.
- W1093064829 cites W2045010718 @default.
- W1093064829 cites W2051812123 @default.
- W1093064829 cites W2052742260 @default.
- W1093064829 cites W2055783626 @default.
- W1093064829 cites W2056527732 @default.
- W1093064829 cites W2060701556 @default.
- W1093064829 cites W2062469750 @default.
- W1093064829 cites W2063859734 @default.
- W1093064829 cites W2064019305 @default.
- W1093064829 cites W2064145055 @default.
- W1093064829 cites W2069528898 @default.
- W1093064829 cites W2071068165 @default.
- W1093064829 cites W2074267385 @default.
- W1093064829 cites W2076242843 @default.
- W1093064829 cites W2076622031 @default.
- W1093064829 cites W2078524519 @default.
- W1093064829 cites W2079484785 @default.
- W1093064829 cites W2081867911 @default.
- W1093064829 cites W2087070363 @default.
- W1093064829 cites W2090533051 @default.
- W1093064829 cites W2103901176 @default.
- W1093064829 cites W2108019246 @default.
- W1093064829 cites W2109299554 @default.
- W1093064829 cites W2115017507 @default.
- W1093064829 cites W2116104121 @default.
- W1093064829 cites W2120111102 @default.
- W1093064829 cites W2125993125 @default.
- W1093064829 cites W2126598020 @default.
- W1093064829 cites W2129497119 @default.
- W1093064829 cites W2137079931 @default.
- W1093064829 cites W2141955292 @default.
- W1093064829 cites W2143120360 @default.
- W1093064829 cites W2143461767 @default.
- W1093064829 cites W2143826137 @default.
- W1093064829 cites W2146089088 @default.
- W1093064829 cites W2148046162 @default.
- W1093064829 cites W2153171432 @default.
- W1093064829 cites W2155164847 @default.
- W1093064829 cites W2159122349 @default.
- W1093064829 cites W2160227143 @default.
- W1093064829 cites W2162333503 @default.
- W1093064829 cites W2164979083 @default.
- W1093064829 cites W2165278596 @default.
- W1093064829 cites W2167151831 @default.
- W1093064829 cites W2492932470 @default.
- W1093064829 cites W2582524520 @default.
- W1093064829 cites W4213332169 @default.
- W1093064829 cites W4240374605 @default.
- W1093064829 doi "https://doi.org/10.1016/j.neuroscience.2015.08.013" @default.
- W1093064829 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26265552" @default.
- W1093064829 hasPublicationYear "2015" @default.
- W1093064829 type Work @default.
- W1093064829 sameAs 1093064829 @default.
- W1093064829 citedByCount "55" @default.
- W1093064829 countsByYear W10930648292016 @default.
- W1093064829 countsByYear W10930648292017 @default.
- W1093064829 countsByYear W10930648292018 @default.
- W1093064829 countsByYear W10930648292019 @default.
- W1093064829 countsByYear W10930648292020 @default.
- W1093064829 countsByYear W10930648292021 @default.
- W1093064829 countsByYear W10930648292022 @default.
- W1093064829 countsByYear W10930648292023 @default.
- W1093064829 crossrefType "journal-article" @default.
- W1093064829 hasAuthorship W1093064829A5038465361 @default.
- W1093064829 hasAuthorship W1093064829A5043541546 @default.
- W1093064829 hasConcept C118552586 @default.
- W1093064829 hasConcept C142724271 @default.
- W1093064829 hasConcept C154945302 @default.
- W1093064829 hasConcept C15744967 @default.
- W1093064829 hasConcept C169900460 @default.
- W1093064829 hasConcept C2779134260 @default.
- W1093064829 hasConcept C2779483572 @default.
- W1093064829 hasConcept C40567965 @default.