Matches in SemOpenAlex for { <https://semopenalex.org/work/W109362151> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W109362151 endingPage "141" @default.
- W109362151 startingPage "135" @default.
- W109362151 abstract "AbstractToday, there is major interest within the biomedical community in developing accurate noninvasive means for the evaluation of bone microstructure and bone quality. Recent improvements in 3D imaging technology, among them development of micro-CT and micro-MRI scanners, allow in-vivo 3D high-resolution scanning and reconstruction of large specimens or even whole bone models. Thus, the tendency today is to evaluate bone features using 3D assessment techniques rather than traditional 2D methods. For this purpose, high-quality meshing methods are required. However, the 3D meshes produced from current commercial systems usually are of low quality with respect to analysis and rapid prototyping. 3D model reconstruction of bone is difficult due to the complexity of bone microstructure. The small bone features lead to a great deal of neighborhood ambiguity near each vertex. The relatively new neural network method for mesh reconstruction has the potential to create or remesh 3D models accurately and quickly. A neural network (NN), which resembles an artificial intelligence (AI) algorithm, is a set of interconnected neurons, where each neuron is capable of making an autonomous arithmetic calculation. Moreover, each neuron is affected by its surrounding neurons through the structure of the network. This paper proposes an extension of the growing neural gas (GNN) neural network technique for remeshing a triangular manifold mesh that represents bone microstructure. This method has the advantage of reconstructing the surface of a genus-n freeform object without a priori knowledge regarding the original object, its topology, or its shape.Key wordsSelf-organizing map neural networkMicrostructureMeshing3D model reconstructionNeural network" @default.
- W109362151 created "2016-06-24" @default.
- W109362151 creator A5001492044 @default.
- W109362151 creator A5049100885 @default.
- W109362151 date "2012-01-01" @default.
- W109362151 modified "2023-10-18" @default.
- W109362151 title "A Neural Network Technique for Remeshing of Bone Microstructure" @default.
- W109362151 cites W1511009001 @default.
- W109362151 cites W1994135941 @default.
- W109362151 cites W1996376324 @default.
- W109362151 cites W2024735477 @default.
- W109362151 cites W2059421389 @default.
- W109362151 cites W2160515968 @default.
- W109362151 cites W2167003902 @default.
- W109362151 cites W4237222446 @default.
- W109362151 doi "https://doi.org/10.1007/978-1-61779-764-4_9" @default.
- W109362151 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22692609" @default.
- W109362151 hasPublicationYear "2012" @default.
- W109362151 type Work @default.
- W109362151 sameAs 109362151 @default.
- W109362151 citedByCount "1" @default.
- W109362151 countsByYear W1093621512022 @default.
- W109362151 crossrefType "book-chapter" @default.
- W109362151 hasAuthorship W109362151A5001492044 @default.
- W109362151 hasAuthorship W109362151A5049100885 @default.
- W109362151 hasConcept C121684516 @default.
- W109362151 hasConcept C132525143 @default.
- W109362151 hasConcept C153180895 @default.
- W109362151 hasConcept C154945302 @default.
- W109362151 hasConcept C31487907 @default.
- W109362151 hasConcept C41008148 @default.
- W109362151 hasConcept C50644808 @default.
- W109362151 hasConcept C80444323 @default.
- W109362151 hasConcept C80899671 @default.
- W109362151 hasConceptScore W109362151C121684516 @default.
- W109362151 hasConceptScore W109362151C132525143 @default.
- W109362151 hasConceptScore W109362151C153180895 @default.
- W109362151 hasConceptScore W109362151C154945302 @default.
- W109362151 hasConceptScore W109362151C31487907 @default.
- W109362151 hasConceptScore W109362151C41008148 @default.
- W109362151 hasConceptScore W109362151C50644808 @default.
- W109362151 hasConceptScore W109362151C80444323 @default.
- W109362151 hasConceptScore W109362151C80899671 @default.
- W109362151 hasLocation W1093621511 @default.
- W109362151 hasLocation W1093621512 @default.
- W109362151 hasOpenAccess W109362151 @default.
- W109362151 hasPrimaryLocation W1093621511 @default.
- W109362151 hasRelatedWork W1582821823 @default.
- W109362151 hasRelatedWork W2033914206 @default.
- W109362151 hasRelatedWork W2040548056 @default.
- W109362151 hasRelatedWork W2128904762 @default.
- W109362151 hasRelatedWork W2146076056 @default.
- W109362151 hasRelatedWork W2386387936 @default.
- W109362151 hasRelatedWork W2530058199 @default.
- W109362151 hasRelatedWork W2739068242 @default.
- W109362151 hasRelatedWork W3003836766 @default.
- W109362151 hasRelatedWork W3107474891 @default.
- W109362151 isParatext "false" @default.
- W109362151 isRetracted "false" @default.
- W109362151 magId "109362151" @default.
- W109362151 workType "book-chapter" @default.