Matches in SemOpenAlex for { <https://semopenalex.org/work/W110507282> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W110507282 abstract "This project originally started in the Computer Science department in collaboration with the Psychology department at California State University Channel Islands (CSUCI) to determine the brain's functionality in order to detect the traits of autism with the use of Emotiv EPOC Research Edition SDK. In the process of data analysis and due to the complexity of the problem and inconsistency in results, we decided to break it down, first, in order to better understand the nature of brain waves generated by emotional states, and second, to determine the features associated with EEG classification of the waves. In addition, due to consequence of problems dealing with the real-world data for Psychological purposes from Computer Science perspective, researching the possibility of dealing with data with such nature was critical. Due to the complexity of wave pattern recognition, especially EEGs signals, determining the right classification method along with a feature vector suitable for this classification is a formidable task. Therefore, the research presented in this document allows for better understanding of this kind of problems. Furthermore, it provides guidelines to selecting right features and analytical methods suitable for tackling such problems. Identifying the right feature space for brain waves for the classification of complex concepts helps with implementing both applications and devices utilizing Brain Computer Interfaces.In this project, the brain waves of a number of subjects are collected during watching videos which generate emotions such as calmness, happiness, sadness, and annoyance. The videos are selected from You Tube and they were assumed to prompt the emotions in the subjects. The selected videos showed satisfactory amount of correspondence to the emotions according to feedbacks from the subjects. Subsequently, the data are used by a machine learning algorithms to construct a pattern classifier that can recognize the emotions as four different categories; namely: positive low arousal, positive high arousal, negative low arousal, and negative high arousal emotions. A number of parameters and feature vectors are used to determine the best sets for this problem." @default.
- W110507282 created "2016-06-24" @default.
- W110507282 creator A5035606636 @default.
- W110507282 date "2013-01-01" @default.
- W110507282 modified "2023-09-27" @default.
- W110507282 title "Brain Computer Interfaces Emotional State Detection (EEG Pattern Recognition)" @default.
- W110507282 cites W1493971325 @default.
- W110507282 cites W1534872821 @default.
- W110507282 cites W1578954362 @default.
- W110507282 cites W2002016471 @default.
- W110507282 cites W2051749208 @default.
- W110507282 cites W2066828797 @default.
- W110507282 cites W2124503759 @default.
- W110507282 cites W2133671888 @default.
- W110507282 cites W2235060693 @default.
- W110507282 cites W620407030 @default.
- W110507282 hasPublicationYear "2013" @default.
- W110507282 type Work @default.
- W110507282 sameAs 110507282 @default.
- W110507282 citedByCount "0" @default.
- W110507282 crossrefType "journal-article" @default.
- W110507282 hasAuthorship W110507282A5035606636 @default.
- W110507282 hasConcept C107457646 @default.
- W110507282 hasConcept C118552586 @default.
- W110507282 hasConcept C153180895 @default.
- W110507282 hasConcept C154945302 @default.
- W110507282 hasConcept C15744967 @default.
- W110507282 hasConcept C173201364 @default.
- W110507282 hasConcept C206310091 @default.
- W110507282 hasConcept C2778999518 @default.
- W110507282 hasConcept C2779302386 @default.
- W110507282 hasConcept C2779812673 @default.
- W110507282 hasConcept C2986798296 @default.
- W110507282 hasConcept C41008148 @default.
- W110507282 hasConcept C522805319 @default.
- W110507282 hasConcept C77805123 @default.
- W110507282 hasConceptScore W110507282C107457646 @default.
- W110507282 hasConceptScore W110507282C118552586 @default.
- W110507282 hasConceptScore W110507282C153180895 @default.
- W110507282 hasConceptScore W110507282C154945302 @default.
- W110507282 hasConceptScore W110507282C15744967 @default.
- W110507282 hasConceptScore W110507282C173201364 @default.
- W110507282 hasConceptScore W110507282C206310091 @default.
- W110507282 hasConceptScore W110507282C2778999518 @default.
- W110507282 hasConceptScore W110507282C2779302386 @default.
- W110507282 hasConceptScore W110507282C2779812673 @default.
- W110507282 hasConceptScore W110507282C2986798296 @default.
- W110507282 hasConceptScore W110507282C41008148 @default.
- W110507282 hasConceptScore W110507282C522805319 @default.
- W110507282 hasConceptScore W110507282C77805123 @default.
- W110507282 hasLocation W1105072821 @default.
- W110507282 hasOpenAccess W110507282 @default.
- W110507282 hasPrimaryLocation W1105072821 @default.
- W110507282 hasRelatedWork W2025917256 @default.
- W110507282 hasRelatedWork W2067460630 @default.
- W110507282 hasRelatedWork W2139564752 @default.
- W110507282 hasRelatedWork W2186032439 @default.
- W110507282 hasRelatedWork W2396377518 @default.
- W110507282 hasRelatedWork W2548042986 @default.
- W110507282 hasRelatedWork W2778812440 @default.
- W110507282 hasRelatedWork W2796902623 @default.
- W110507282 hasRelatedWork W2898998273 @default.
- W110507282 hasRelatedWork W2912808853 @default.
- W110507282 hasRelatedWork W2920125235 @default.
- W110507282 hasRelatedWork W2990866961 @default.
- W110507282 hasRelatedWork W3019443643 @default.
- W110507282 hasRelatedWork W3021990843 @default.
- W110507282 hasRelatedWork W3027008785 @default.
- W110507282 hasRelatedWork W3093717841 @default.
- W110507282 hasRelatedWork W3128108479 @default.
- W110507282 hasRelatedWork W3163784053 @default.
- W110507282 hasRelatedWork W3167198774 @default.
- W110507282 hasRelatedWork W3185726266 @default.
- W110507282 isParatext "false" @default.
- W110507282 isRetracted "false" @default.
- W110507282 magId "110507282" @default.
- W110507282 workType "article" @default.