Matches in SemOpenAlex for { <https://semopenalex.org/work/W111287795> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W111287795 abstract "Problems involving material anisotropy are in general more difficult to solve than the isotropic ones. The problem of an anisotropic composite material can be examined on the assumption that the matrix is only slightly anisotropic (Lekhnitskii, 1963, 1968; Sachenkov and Daragan, 1972). On the other hand, as it has been shown by Kosmodamianskii for an anisotropic plane with two identical elliptic holes (Kosmodamianskii, 1966, 1976), strong anisotropy leads to the possibility of sufficient simplifications of the governing boundary value problems. Independently Manevitch, Pavlenko and Shamrovskii (1970, 1971) and Everstine and Pipkin (1971, 1973) (see also Spencer, 1974; Sanchez and Pipkin, 1978; Pipkin, 1979, 1984; Christensen, 1979), beginning with elasticity theory and treating the extensibility of the material in a preferred direction as a small parameter, used the singular perturbation method to obtain approximate boundary value problems. The governing plane problem is reduced to that of solving two Laplace equations and, if higher-order approximations are wanted, a number of Poisson’s equations. The comparison of approximate solutions with the exact anisotropic elastic solutions showed satisfactory agreement (Kosmodamianskii, 1976; Manevitch, Pavlenko and Shamrovskii, 1970, 1971; Everstine and Pipkin, 1971, 1973; Spencer, 1974; Pipkin, 1979, 1984; Sanchez and Pipkin, 1978; Christensen, 1979). In the paper by Everstine and Pipkin (1971) a cantilever beam with end load was analysed. Spencer (1974) studied the problem of a crack parallel to the fibres in shear, as well as a crack normal to the fibre direction opened by internal pressure. Bogan (1981, 1994) considered the stress distribution within the elliptic region, and the contact problem for the half-plane. Sanchez and Pipkin (1978) showed how to compute the elastic stress factor at a crack tip from the force in the singular fiber passing throw the tip. The efficiency of the asymptotic approach for solving of plane anisotropic contact problems was shown in the papers (Manevitch and Pavlenko, 1975, 1982; Manevitch, Pavlenko and Koblik, 1979; Manevitch, 2001; Pavlenko, 1981; Andrianov, Awrejcewicz and Manevitch, 2004). A generalization for the axially symmetric case with a cylindrically orthotropic matrix was proposed in the papers by Pavlenko (1980), Manevitch and Pavlenko (1991). The papers by Kagadii and Pavlenko (1989, 1992) are devoted to the fibre reinforced composites with a viscoelastic orthotropic matrix." @default.
- W111287795 created "2016-06-24" @default.
- W111287795 creator A5014166874 @default.
- W111287795 creator A5027242808 @default.
- W111287795 date "2008-01-01" @default.
- W111287795 modified "2023-09-23" @default.
- W111287795 title "Asymptotic Analysis of Strongly Anisotropic Solids" @default.
- W111287795 cites W1533306533 @default.
- W111287795 cites W1641536003 @default.
- W111287795 cites W1830333253 @default.
- W111287795 cites W1972550529 @default.
- W111287795 cites W1977369891 @default.
- W111287795 cites W1988664011 @default.
- W111287795 cites W1990521435 @default.
- W111287795 cites W1993872740 @default.
- W111287795 cites W2008735564 @default.
- W111287795 cites W2021648228 @default.
- W111287795 cites W2024036171 @default.
- W111287795 cites W2037584761 @default.
- W111287795 cites W2081706723 @default.
- W111287795 cites W2154925563 @default.
- W111287795 cites W229464642 @default.
- W111287795 hasPublicationYear "2008" @default.
- W111287795 type Work @default.
- W111287795 sameAs 111287795 @default.
- W111287795 citedByCount "0" @default.
- W111287795 crossrefType "journal-article" @default.
- W111287795 hasAuthorship W111287795A5014166874 @default.
- W111287795 hasAuthorship W111287795A5027242808 @default.
- W111287795 hasConcept C120665830 @default.
- W111287795 hasConcept C121332964 @default.
- W111287795 hasConcept C121854251 @default.
- W111287795 hasConcept C134306372 @default.
- W111287795 hasConcept C182310444 @default.
- W111287795 hasConcept C184050105 @default.
- W111287795 hasConcept C33923547 @default.
- W111287795 hasConcept C520416788 @default.
- W111287795 hasConcept C85725439 @default.
- W111287795 hasConcept C97355855 @default.
- W111287795 hasConcept C97937538 @default.
- W111287795 hasConceptScore W111287795C120665830 @default.
- W111287795 hasConceptScore W111287795C121332964 @default.
- W111287795 hasConceptScore W111287795C121854251 @default.
- W111287795 hasConceptScore W111287795C134306372 @default.
- W111287795 hasConceptScore W111287795C182310444 @default.
- W111287795 hasConceptScore W111287795C184050105 @default.
- W111287795 hasConceptScore W111287795C33923547 @default.
- W111287795 hasConceptScore W111287795C520416788 @default.
- W111287795 hasConceptScore W111287795C85725439 @default.
- W111287795 hasConceptScore W111287795C97355855 @default.
- W111287795 hasConceptScore W111287795C97937538 @default.
- W111287795 hasLocation W1112877951 @default.
- W111287795 hasOpenAccess W111287795 @default.
- W111287795 hasPrimaryLocation W1112877951 @default.
- W111287795 hasRelatedWork W174305683 @default.
- W111287795 hasRelatedWork W1963570342 @default.
- W111287795 hasRelatedWork W1988275117 @default.
- W111287795 hasRelatedWork W1994428925 @default.
- W111287795 hasRelatedWork W1999769295 @default.
- W111287795 hasRelatedWork W2007097764 @default.
- W111287795 hasRelatedWork W2007429723 @default.
- W111287795 hasRelatedWork W2029003240 @default.
- W111287795 hasRelatedWork W2082932109 @default.
- W111287795 hasRelatedWork W2330405610 @default.
- W111287795 hasRelatedWork W246958784 @default.
- W111287795 hasRelatedWork W2559005707 @default.
- W111287795 hasRelatedWork W2808340398 @default.
- W111287795 hasRelatedWork W2951991024 @default.
- W111287795 hasRelatedWork W2953917362 @default.
- W111287795 hasRelatedWork W3164322233 @default.
- W111287795 hasRelatedWork W52592494 @default.
- W111287795 hasRelatedWork W928640171 @default.
- W111287795 hasRelatedWork W2526835396 @default.
- W111287795 hasRelatedWork W3119575174 @default.
- W111287795 isParatext "false" @default.
- W111287795 isRetracted "false" @default.
- W111287795 magId "111287795" @default.
- W111287795 workType "article" @default.