Matches in SemOpenAlex for { <https://semopenalex.org/work/W111287968> ?p ?o ?g. }
- W111287968 abstract "In many scientific studies the goal is to determine the effect of a particular feature or variable on a given outcome in order to help understand, identify, and quantify the driving factors behind a particular phenomena. This type of analysis is commonly referred to as variable importance analysis. Parametric methods used to estimate these effects are prone to bias. This bias is often the result of incorrect model specification and improper inference for the parameter of interest. Alternative machine learning techniques, such as Random Forest, often result in abstract measures of importance whose inference depends on a computationally intensive bootstrap analysis. In this thesis, robust estimators for variable importance based on targeted maximum likelihood methodology are presented and developed for three types of outcomes (1) univariate continuous, (2) multivariate continuous, and (3) binary outcome. These estimators are specifically designed to target the effect of a variable of interest on an outcome while adjusting for confounders when the variable of interest is of general form (i.e. continuous or discrete). When the outcome is continuous (1,2), the effect is on an additive scale. When the outcome is binary (3), the effect is on a multiplicative scale, and the importance measure is a relative risk. The estimators are developed under a flexible semiparametric model, in which only components related to the variable of interest must be fully specified, and effect modification can be easily incorporated. Based on targeted maximum likelihood theory, the presented estimators are double robust and locally efficient, and correct inference for the parameter of interest is available using the corresponding influence curve. In this thesis, the three estimators relating to the three outcomes are derived from targeted maximum likelihood methodology and implemented by adapting standard statistical regression software. These estimators are applied in both simulation and application. In a simulated biomarker discovery analysis, the robustness of the estimator for a univariate continuous outcome is compared to other common methods of variable importance under increasing correlation among the covariates. In a repeated measures setting, the double robust property of the estimator for a multivariate continuous outcome is demonstrated in simulation, and the estimator is applied in a transcription factor analysis to determine the activity level of transcription factors during the cell cycle in yeast. For a binary outcome, the estimator for the relative risk is applied to estimate the effect of HIV genetic susceptibility scores on viral response. Effect modification is also explored and model selection methodology is introduced." @default.
- W111287968 created "2016-06-24" @default.
- W111287968 creator A5022453551 @default.
- W111287968 date "2010-01-01" @default.
- W111287968 modified "2023-09-27" @default.
- W111287968 title "Robust Semiparametric Regression Estimation Using Targeted Maximum Likelihood with Application to Biomarker Discovery and Epidemiology" @default.
- W111287968 cites W1211118294 @default.
- W111287968 cites W127965993 @default.
- W111287968 cites W1484811165 @default.
- W111287968 cites W1486648009 @default.
- W111287968 cites W1512624495 @default.
- W111287968 cites W1566287050 @default.
- W111287968 cites W1600582725 @default.
- W111287968 cites W1644724366 @default.
- W111287968 cites W1753000577 @default.
- W111287968 cites W180632252 @default.
- W111287968 cites W1911086532 @default.
- W111287968 cites W1966701961 @default.
- W111287968 cites W1967225010 @default.
- W111287968 cites W1974625788 @default.
- W111287968 cites W1987303706 @default.
- W111287968 cites W1991696101 @default.
- W111287968 cites W1991859498 @default.
- W111287968 cites W1992976108 @default.
- W111287968 cites W1999975842 @default.
- W111287968 cites W2000098294 @default.
- W111287968 cites W2000789302 @default.
- W111287968 cites W2004447908 @default.
- W111287968 cites W2004470861 @default.
- W111287968 cites W2006156356 @default.
- W111287968 cites W2008065206 @default.
- W111287968 cites W2008388668 @default.
- W111287968 cites W2009099332 @default.
- W111287968 cites W2012253608 @default.
- W111287968 cites W2015879631 @default.
- W111287968 cites W2019579897 @default.
- W111287968 cites W2020330574 @default.
- W111287968 cites W2022450888 @default.
- W111287968 cites W2024529818 @default.
- W111287968 cites W2039805273 @default.
- W111287968 cites W2042150510 @default.
- W111287968 cites W2042682122 @default.
- W111287968 cites W2046977371 @default.
- W111287968 cites W2055154647 @default.
- W111287968 cites W2055275378 @default.
- W111287968 cites W2060416552 @default.
- W111287968 cites W2063978378 @default.
- W111287968 cites W2070340804 @default.
- W111287968 cites W2071808384 @default.
- W111287968 cites W2075005938 @default.
- W111287968 cites W2080401629 @default.
- W111287968 cites W2080498142 @default.
- W111287968 cites W2083588754 @default.
- W111287968 cites W2083610611 @default.
- W111287968 cites W2092868756 @default.
- W111287968 cites W2096139934 @default.
- W111287968 cites W2101347185 @default.
- W111287968 cites W2108623569 @default.
- W111287968 cites W2109363337 @default.
- W111287968 cites W2110065044 @default.
- W111287968 cites W2110476457 @default.
- W111287968 cites W2110904362 @default.
- W111287968 cites W2111988768 @default.
- W111287968 cites W2112669742 @default.
- W111287968 cites W2112690088 @default.
- W111287968 cites W2113301783 @default.
- W111287968 cites W2123600940 @default.
- W111287968 cites W2127237622 @default.
- W111287968 cites W2128985829 @default.
- W111287968 cites W2130226344 @default.
- W111287968 cites W2132641868 @default.
- W111287968 cites W2135046866 @default.
- W111287968 cites W2138049103 @default.
- W111287968 cites W2138624529 @default.
- W111287968 cites W2142446963 @default.
- W111287968 cites W2144710927 @default.
- W111287968 cites W2147192675 @default.
- W111287968 cites W2148997157 @default.
- W111287968 cites W2149860264 @default.
- W111287968 cites W2153941399 @default.
- W111287968 cites W2157036549 @default.
- W111287968 cites W2158076415 @default.
- W111287968 cites W2159533632 @default.
- W111287968 cites W2162279004 @default.
- W111287968 cites W2163393712 @default.
- W111287968 cites W2164254918 @default.
- W111287968 cites W2169484696 @default.
- W111287968 cites W2169986380 @default.
- W111287968 cites W225957511 @default.
- W111287968 cites W2331384579 @default.
- W111287968 cites W2405394717 @default.
- W111287968 cites W273955616 @default.
- W111287968 cites W2797583072 @default.
- W111287968 cites W3203298545 @default.
- W111287968 cites W50902326 @default.
- W111287968 cites W54818387 @default.
- W111287968 cites W560298130 @default.
- W111287968 cites W1602026172 @default.
- W111287968 hasPublicationYear "2010" @default.
- W111287968 type Work @default.