Matches in SemOpenAlex for { <https://semopenalex.org/work/W112587752> ?p ?o ?g. }
- W112587752 abstract "Liquid-phase sintering is the process where a precompacted powder, “green body”, is heated to the point where (a part of) the solid material melts, and the specimen shrinks while keeping (almost) net shape. In the case of hardmetal, the microstructure is defined by WC-Co-particles with large pores, whereby molten Co represents the liquid phase. In the ideal case, a fully dense material is achieved when the sintering is completed. The “driving force” of the sintering procedure is surface tension along the free surfaces, i.e. Co-pore interfaces. In this thesis, the intrinsic deformation of both the solid phase and the melt phase is modeled as the creeping flow of the Stokes’ type, whereby elastic deformation is ignored. The macroscopic properties are derived via computational homogenization that utilizes a highly idealized mesostructure within each Representative Volume Element (RVE). 2D RVE’s are used predominantly; however, 3D-mesostructures are also analyzed. Within the FE2 algorithmic setting, the homogenization is carried out at the Gaussian integration points in the macroscale FE-mesh. This allow for the investigation of properties that are not easily captured with traditional macroscopic constitutive models, which inevitably would become highly complex with many material parameters that lack physical interpretation. The finite element mesh of the RVE becomes heavily deformed as the surface tension pulls the particles closer; hence, it was necessary to develop a surface tracking method with remeshing. As an element in the mesh reaches a certain deformed state, defined by the condition number of the Jacobian, a new mesh is created. The FE2 algorithm has been implemented in the open source FE-code OOFEM (written in C++) where the code is parallelized w.r.t. the elements in the macroscale mesh. A number of (more generic or less generic) issues related to the homogenization theory and algorithm are discussed in the thesis: (i) The implications of Variationally Consistent Homogenization (VCH) and the consequent satisfaction of the “macrohomogeneity condition”. One issue is how to homogenize the stress and volumetric rate-of-deformation when pores are present. (ii) How to establish a variational framework on both scales, based on a suitable mixture of fields, that allows for a seamless transition from macroscopically compressible to incompressible response. Such a transition is of utmost importance for the practical use of the FE2 algorithm in view of eventual macroscopic incompressibility of each individual RVE (as the porosity vanishes locally). In particular, the corresponding RVE-problems are designed in such a fashion that they are “fed” by the deviatoric part of the macroscopic rate-of-deformation and the macroscopic pressure. (iii) The role of boundary conditions on RVE, in particular how bounds on the “macroscale energy density” can be established via the use of Dirichlet and Neumann boundary conditions. Numerical examples are shown for different loading scenarios, where the macroscopic behavior is studied." @default.
- W112587752 created "2016-06-24" @default.
- W112587752 creator A5054508265 @default.
- W112587752 date "2014-01-01" @default.
- W112587752 modified "2023-09-27" @default.
- W112587752 title "On computational modeling of sintering based on homogenization" @default.
- W112587752 cites W1650538669 @default.
- W112587752 cites W190681446 @default.
- W112587752 cites W1965815363 @default.
- W112587752 cites W1973501867 @default.
- W112587752 cites W1986233231 @default.
- W112587752 cites W1988752280 @default.
- W112587752 cites W1998164343 @default.
- W112587752 cites W2005002482 @default.
- W112587752 cites W2007650703 @default.
- W112587752 cites W2008087198 @default.
- W112587752 cites W2010687061 @default.
- W112587752 cites W2014153343 @default.
- W112587752 cites W2014208205 @default.
- W112587752 cites W2016466331 @default.
- W112587752 cites W2017298982 @default.
- W112587752 cites W2034290807 @default.
- W112587752 cites W2039294400 @default.
- W112587752 cites W2041158364 @default.
- W112587752 cites W2041775597 @default.
- W112587752 cites W2045713433 @default.
- W112587752 cites W2051064574 @default.
- W112587752 cites W2053830082 @default.
- W112587752 cites W2055435860 @default.
- W112587752 cites W2057260179 @default.
- W112587752 cites W2061709760 @default.
- W112587752 cites W2063758810 @default.
- W112587752 cites W2071718409 @default.
- W112587752 cites W2072629492 @default.
- W112587752 cites W2074443830 @default.
- W112587752 cites W2092620527 @default.
- W112587752 cites W2107168131 @default.
- W112587752 cites W2140275895 @default.
- W112587752 cites W2145856055 @default.
- W112587752 cites W2146125578 @default.
- W112587752 cites W2166705418 @default.
- W112587752 cites W2169783714 @default.
- W112587752 hasPublicationYear "2014" @default.
- W112587752 type Work @default.
- W112587752 sameAs 112587752 @default.
- W112587752 citedByCount "0" @default.
- W112587752 crossrefType "dissertation" @default.
- W112587752 hasAuthorship W112587752A5054508265 @default.
- W112587752 hasConcept C121332964 @default.
- W112587752 hasConcept C130217890 @default.
- W112587752 hasConcept C135628077 @default.
- W112587752 hasConcept C159985019 @default.
- W112587752 hasConcept C160635147 @default.
- W112587752 hasConcept C18903297 @default.
- W112587752 hasConcept C19191322 @default.
- W112587752 hasConcept C192562407 @default.
- W112587752 hasConcept C20138086 @default.
- W112587752 hasConcept C2777581544 @default.
- W112587752 hasConcept C2778722038 @default.
- W112587752 hasConcept C38349280 @default.
- W112587752 hasConcept C57879066 @default.
- W112587752 hasConcept C86803240 @default.
- W112587752 hasConcept C87976508 @default.
- W112587752 hasConcept C8892853 @default.
- W112587752 hasConcept C97355855 @default.
- W112587752 hasConceptScore W112587752C121332964 @default.
- W112587752 hasConceptScore W112587752C130217890 @default.
- W112587752 hasConceptScore W112587752C135628077 @default.
- W112587752 hasConceptScore W112587752C159985019 @default.
- W112587752 hasConceptScore W112587752C160635147 @default.
- W112587752 hasConceptScore W112587752C18903297 @default.
- W112587752 hasConceptScore W112587752C19191322 @default.
- W112587752 hasConceptScore W112587752C192562407 @default.
- W112587752 hasConceptScore W112587752C20138086 @default.
- W112587752 hasConceptScore W112587752C2777581544 @default.
- W112587752 hasConceptScore W112587752C2778722038 @default.
- W112587752 hasConceptScore W112587752C38349280 @default.
- W112587752 hasConceptScore W112587752C57879066 @default.
- W112587752 hasConceptScore W112587752C86803240 @default.
- W112587752 hasConceptScore W112587752C87976508 @default.
- W112587752 hasConceptScore W112587752C8892853 @default.
- W112587752 hasConceptScore W112587752C97355855 @default.
- W112587752 hasLocation W1125877521 @default.
- W112587752 hasOpenAccess W112587752 @default.
- W112587752 hasPrimaryLocation W1125877521 @default.
- W112587752 hasRelatedWork W132640315 @default.
- W112587752 hasRelatedWork W1494881112 @default.
- W112587752 hasRelatedWork W1508267272 @default.
- W112587752 hasRelatedWork W1580160693 @default.
- W112587752 hasRelatedWork W1902610790 @default.
- W112587752 hasRelatedWork W2019316318 @default.
- W112587752 hasRelatedWork W2026822559 @default.
- W112587752 hasRelatedWork W2088046090 @default.
- W112587752 hasRelatedWork W2109393100 @default.
- W112587752 hasRelatedWork W2115050083 @default.
- W112587752 hasRelatedWork W2256903059 @default.
- W112587752 hasRelatedWork W2270784712 @default.
- W112587752 hasRelatedWork W2329413602 @default.
- W112587752 hasRelatedWork W2586613841 @default.
- W112587752 hasRelatedWork W2752334529 @default.