Matches in SemOpenAlex for { <https://semopenalex.org/work/W1131401208> ?p ?o ?g. }
- W1131401208 endingPage "1331" @default.
- W1131401208 startingPage "1317" @default.
- W1131401208 abstract "Production data analysis for low-permeability unconventional reservoirs is a challenging task, particularly for cases where multi-phase flow occurs within the reservoir. Analytical models developed to account for multi-phase flow typically require calculation of pseudo variables, which in turn require knowledge of relative permeability and fluid data. In the presence of sparse sampling, the analytical models often do not provide satisfactory results when there are so many unknown parameters. In such situations, numerical models are better suited, using a history matching framework to assist with reservoir and fluid characterization. In this work, we implement an assisted history-matching routine to characterize reservoir fluids and extract reservoir and hydraulic fracture properties for a hydraulically-fractured horizontal well completed in a tight gas condensate reservoir within the Montney Formation in western Alberta, Canada. The initial water distribution (e.g. movable water profile in the reservoir), in situ fluid (e.g. initial hydrocarbon composition with C7+ properties) and reservoir properties (e.g. permeability in the matrix and around the fracture, and pressure dependent fracture permeability) are described in terms of 20 unknown parameters, which creates a high-dimensional inverse problem. We use the Differential Evolution algorithm, which is a powerful population-based optimization algorithm, and employ numerical compositional simulations to match pressure, water and hydrocarbon rates, and surface compositions of the produced fluids. Application of this optimization routine results in a good match to all measured data. The DE algorithm is repeated for an extra run to check for the existence of other non-unique solutions. The history-match results helped determine parameters for well/reservoir description and develop a compositional fluid model based on the measured separator composition data. The collected samples for both DE runs, along with one thousand extra samples from quasi-random sequence sampling design, provide a pool of data with invaluable information that are used to perform the global sensitivity analysis and to rank the contribution of each descriptive parameter on the variances of the reservoir outputs. In this way, the value of production data and surface compositions for the characterization of reservoir and fluid is quantified. This work aims to provide a practical and simple workflow for analysis of unconventional reservoirs where the direct analytical approaches cannot be applied." @default.
- W1131401208 created "2016-06-24" @default.
- W1131401208 creator A5011286576 @default.
- W1131401208 creator A5041181937 @default.
- W1131401208 creator A5062797157 @default.
- W1131401208 creator A5086433697 @default.
- W1131401208 date "2015-09-01" @default.
- W1131401208 modified "2023-09-26" @default.
- W1131401208 title "Using differential evolution for compositional history-matching of a tight gas condensate well in the Montney Formation in western Canada" @default.
- W1131401208 cites W1510052597 @default.
- W1131401208 cites W1968566026 @default.
- W1131401208 cites W1972739944 @default.
- W1131401208 cites W1976883852 @default.
- W1131401208 cites W1995985617 @default.
- W1131401208 cites W2014181466 @default.
- W1131401208 cites W2027871524 @default.
- W1131401208 cites W2038679989 @default.
- W1131401208 cites W2039402439 @default.
- W1131401208 cites W2050092501 @default.
- W1131401208 cites W2067235536 @default.
- W1131401208 cites W2073397831 @default.
- W1131401208 cites W2093625674 @default.
- W1131401208 cites W2102201073 @default.
- W1131401208 cites W2118113566 @default.
- W1131401208 cites W2132931900 @default.
- W1131401208 cites W2137989174 @default.
- W1131401208 cites W2151238122 @default.
- W1131401208 cites W2154188458 @default.
- W1131401208 cites W2156921865 @default.
- W1131401208 cites W2168684552 @default.
- W1131401208 cites W2314104404 @default.
- W1131401208 cites W2543580944 @default.
- W1131401208 doi "https://doi.org/10.1016/j.jngse.2015.08.015" @default.
- W1131401208 hasPublicationYear "2015" @default.
- W1131401208 type Work @default.
- W1131401208 sameAs 1131401208 @default.
- W1131401208 citedByCount "17" @default.
- W1131401208 countsByYear W11314012082015 @default.
- W1131401208 countsByYear W11314012082016 @default.
- W1131401208 countsByYear W11314012082017 @default.
- W1131401208 countsByYear W11314012082018 @default.
- W1131401208 countsByYear W11314012082019 @default.
- W1131401208 countsByYear W11314012082020 @default.
- W1131401208 countsByYear W11314012082021 @default.
- W1131401208 countsByYear W11314012082022 @default.
- W1131401208 crossrefType "journal-article" @default.
- W1131401208 hasAuthorship W1131401208A5011286576 @default.
- W1131401208 hasAuthorship W1131401208A5041181937 @default.
- W1131401208 hasAuthorship W1131401208A5062797157 @default.
- W1131401208 hasAuthorship W1131401208A5086433697 @default.
- W1131401208 hasConcept C105569014 @default.
- W1131401208 hasConcept C113378726 @default.
- W1131401208 hasConcept C120882062 @default.
- W1131401208 hasConcept C121332964 @default.
- W1131401208 hasConcept C127313418 @default.
- W1131401208 hasConcept C14641988 @default.
- W1131401208 hasConcept C151730666 @default.
- W1131401208 hasConcept C183250156 @default.
- W1131401208 hasConcept C185592680 @default.
- W1131401208 hasConcept C187320778 @default.
- W1131401208 hasConcept C2777447996 @default.
- W1131401208 hasConcept C2778668878 @default.
- W1131401208 hasConcept C2779096232 @default.
- W1131401208 hasConcept C41625074 @default.
- W1131401208 hasConcept C48797263 @default.
- W1131401208 hasConcept C548895740 @default.
- W1131401208 hasConcept C55493867 @default.
- W1131401208 hasConcept C57879066 @default.
- W1131401208 hasConcept C6648577 @default.
- W1131401208 hasConcept C78762247 @default.
- W1131401208 hasConcept C90278072 @default.
- W1131401208 hasConceptScore W1131401208C105569014 @default.
- W1131401208 hasConceptScore W1131401208C113378726 @default.
- W1131401208 hasConceptScore W1131401208C120882062 @default.
- W1131401208 hasConceptScore W1131401208C121332964 @default.
- W1131401208 hasConceptScore W1131401208C127313418 @default.
- W1131401208 hasConceptScore W1131401208C14641988 @default.
- W1131401208 hasConceptScore W1131401208C151730666 @default.
- W1131401208 hasConceptScore W1131401208C183250156 @default.
- W1131401208 hasConceptScore W1131401208C185592680 @default.
- W1131401208 hasConceptScore W1131401208C187320778 @default.
- W1131401208 hasConceptScore W1131401208C2777447996 @default.
- W1131401208 hasConceptScore W1131401208C2778668878 @default.
- W1131401208 hasConceptScore W1131401208C2779096232 @default.
- W1131401208 hasConceptScore W1131401208C41625074 @default.
- W1131401208 hasConceptScore W1131401208C48797263 @default.
- W1131401208 hasConceptScore W1131401208C548895740 @default.
- W1131401208 hasConceptScore W1131401208C55493867 @default.
- W1131401208 hasConceptScore W1131401208C57879066 @default.
- W1131401208 hasConceptScore W1131401208C6648577 @default.
- W1131401208 hasConceptScore W1131401208C78762247 @default.
- W1131401208 hasConceptScore W1131401208C90278072 @default.
- W1131401208 hasLocation W11314012081 @default.
- W1131401208 hasOpenAccess W1131401208 @default.
- W1131401208 hasPrimaryLocation W11314012081 @default.
- W1131401208 hasRelatedWork W1964445301 @default.
- W1131401208 hasRelatedWork W2005759106 @default.
- W1131401208 hasRelatedWork W2014514421 @default.