Matches in SemOpenAlex for { <https://semopenalex.org/work/W1134232692> ?p ?o ?g. }
- W1134232692 endingPage "654" @default.
- W1134232692 startingPage "642" @default.
- W1134232692 abstract "Electricity price forecast is key information for successful operation of electricity market participants. However, the time series of electricity price has nonlinear, non-stationary and volatile behaviour and so its forecast method should have high learning capability to extract the complex input/output mapping function of electricity price. In this paper, a Combinatorial Neural Network (CNN) based forecasting engine is proposed to predict the future values of price data. The CNN-based forecasting engine is equipped with a new training mechanism for optimizing the weights of the CNN. This training mechanism is based on an efficient stochastic search method, which is a modified version of chemical reaction optimization algorithm, giving high learning ability to the CNN. The proposed price forecast strategy is tested on the real-world electricity markets of Pennsylvania–New Jersey–Maryland (PJM) and mainland Spain and its obtained results are extensively compared with the results obtained from several other forecast methods. These comparisons illustrate effectiveness of the proposed strategy." @default.
- W1134232692 created "2016-06-24" @default.
- W1134232692 creator A5020761786 @default.
- W1134232692 creator A5048612159 @default.
- W1134232692 creator A5065382518 @default.
- W1134232692 creator A5088560163 @default.
- W1134232692 date "2015-11-01" @default.
- W1134232692 modified "2023-10-17" @default.
- W1134232692 title "Electricity price forecast using Combinatorial Neural Network trained by a new stochastic search method" @default.
- W1134232692 cites W1968253958 @default.
- W1134232692 cites W1970211605 @default.
- W1134232692 cites W1982870152 @default.
- W1134232692 cites W1992661499 @default.
- W1134232692 cites W2001797389 @default.
- W1134232692 cites W2006961019 @default.
- W1134232692 cites W2010538021 @default.
- W1134232692 cites W2013845994 @default.
- W1134232692 cites W2021513768 @default.
- W1134232692 cites W2024155197 @default.
- W1134232692 cites W2040264129 @default.
- W1134232692 cites W2049986915 @default.
- W1134232692 cites W2052945018 @default.
- W1134232692 cites W2055485811 @default.
- W1134232692 cites W2060261774 @default.
- W1134232692 cites W2071555926 @default.
- W1134232692 cites W2078376347 @default.
- W1134232692 cites W2089217930 @default.
- W1134232692 cites W2094256195 @default.
- W1134232692 cites W2095471434 @default.
- W1134232692 cites W2096071157 @default.
- W1134232692 cites W2096220984 @default.
- W1134232692 cites W2125747076 @default.
- W1134232692 cites W2125965138 @default.
- W1134232692 cites W2126709108 @default.
- W1134232692 cites W2126831543 @default.
- W1134232692 cites W2129071786 @default.
- W1134232692 cites W2132591205 @default.
- W1134232692 cites W2133614187 @default.
- W1134232692 cites W2136554306 @default.
- W1134232692 cites W2137699278 @default.
- W1134232692 cites W2138321920 @default.
- W1134232692 cites W2140744497 @default.
- W1134232692 cites W2143836457 @default.
- W1134232692 cites W2155311203 @default.
- W1134232692 cites W2158984605 @default.
- W1134232692 cites W2163178248 @default.
- W1134232692 cites W2163897014 @default.
- W1134232692 cites W2168185444 @default.
- W1134232692 cites W2169337658 @default.
- W1134232692 cites W2171985965 @default.
- W1134232692 cites W2236744271 @default.
- W1134232692 doi "https://doi.org/10.1016/j.enconman.2015.08.025" @default.
- W1134232692 hasPublicationYear "2015" @default.
- W1134232692 type Work @default.
- W1134232692 sameAs 1134232692 @default.
- W1134232692 citedByCount "67" @default.
- W1134232692 countsByYear W11342326922015 @default.
- W1134232692 countsByYear W11342326922016 @default.
- W1134232692 countsByYear W11342326922017 @default.
- W1134232692 countsByYear W11342326922018 @default.
- W1134232692 countsByYear W11342326922019 @default.
- W1134232692 countsByYear W11342326922020 @default.
- W1134232692 countsByYear W11342326922021 @default.
- W1134232692 countsByYear W11342326922022 @default.
- W1134232692 countsByYear W11342326922023 @default.
- W1134232692 crossrefType "journal-article" @default.
- W1134232692 hasAuthorship W1134232692A5020761786 @default.
- W1134232692 hasAuthorship W1134232692A5048612159 @default.
- W1134232692 hasAuthorship W1134232692A5065382518 @default.
- W1134232692 hasAuthorship W1134232692A5088560163 @default.
- W1134232692 hasConcept C119599485 @default.
- W1134232692 hasConcept C119857082 @default.
- W1134232692 hasConcept C126255220 @default.
- W1134232692 hasConcept C127413603 @default.
- W1134232692 hasConcept C14036430 @default.
- W1134232692 hasConcept C146733006 @default.
- W1134232692 hasConcept C154945302 @default.
- W1134232692 hasConcept C206658404 @default.
- W1134232692 hasConcept C26517878 @default.
- W1134232692 hasConcept C2781104810 @default.
- W1134232692 hasConcept C2983129042 @default.
- W1134232692 hasConcept C33923547 @default.
- W1134232692 hasConcept C38652104 @default.
- W1134232692 hasConcept C41008148 @default.
- W1134232692 hasConcept C42475967 @default.
- W1134232692 hasConcept C50644808 @default.
- W1134232692 hasConcept C78458016 @default.
- W1134232692 hasConcept C86803240 @default.
- W1134232692 hasConceptScore W1134232692C119599485 @default.
- W1134232692 hasConceptScore W1134232692C119857082 @default.
- W1134232692 hasConceptScore W1134232692C126255220 @default.
- W1134232692 hasConceptScore W1134232692C127413603 @default.
- W1134232692 hasConceptScore W1134232692C14036430 @default.
- W1134232692 hasConceptScore W1134232692C146733006 @default.
- W1134232692 hasConceptScore W1134232692C154945302 @default.
- W1134232692 hasConceptScore W1134232692C206658404 @default.
- W1134232692 hasConceptScore W1134232692C26517878 @default.
- W1134232692 hasConceptScore W1134232692C2781104810 @default.