Matches in SemOpenAlex for { <https://semopenalex.org/work/W1134508972> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W1134508972 endingPage "573" @default.
- W1134508972 startingPage "562" @default.
- W1134508972 abstract "Entity resolution (ER) has wide-spread applications in many areas, including e-commerce, health-care, the social sciences, and crime and fraud detection. A crucial step in ER is the accurate classification of pairs of records into matches (assumed to refer to the same entity) and non-matches (assumed to refer to different entities). In most practical ER applications it is difficult and costly to obtain training data of high quality and enough size, which impedes the learning of an ER classifier. We tackle this problem using an interactive learning algorithm that exploits the cluster structure in similarity vectors calculated from compared record pairs. We select informative training examples to assess the purity of clusters, and recursively split clusters until clusters pure enough for training are found. We consider two aspects of active learning that are significant in practical applications: a limited budget for the number of manual classifications that can be done, and a noisy oracle where manual labeling might be incorrect. Experiments using several real data sets show that manual labeling efforts can be significantly reduced for training an ER classifier without compromising matching quality." @default.
- W1134508972 created "2016-06-24" @default.
- W1134508972 creator A5022945960 @default.
- W1134508972 creator A5044961357 @default.
- W1134508972 creator A5079324810 @default.
- W1134508972 date "2015-01-01" @default.
- W1134508972 modified "2023-09-23" @default.
- W1134508972 title "Efficient Interactive Training Selection for Large-Scale Entity Resolution" @default.
- W1134508972 cites W1589277632 @default.
- W1134508972 cites W1971636757 @default.
- W1134508972 cites W1972694312 @default.
- W1134508972 cites W1981590391 @default.
- W1134508972 cites W1998475090 @default.
- W1134508972 cites W2042932437 @default.
- W1134508972 cites W2052698082 @default.
- W1134508972 cites W2053062910 @default.
- W1134508972 cites W2065199439 @default.
- W1134508972 cites W2067566391 @default.
- W1134508972 cites W2073583237 @default.
- W1134508972 cites W2111625757 @default.
- W1134508972 cites W2119320829 @default.
- W1134508972 cites W2125943921 @default.
- W1134508972 cites W2140013491 @default.
- W1134508972 cites W2164456230 @default.
- W1134508972 cites W4242744113 @default.
- W1134508972 doi "https://doi.org/10.1007/978-3-319-18032-8_44" @default.
- W1134508972 hasPublicationYear "2015" @default.
- W1134508972 type Work @default.
- W1134508972 sameAs 1134508972 @default.
- W1134508972 citedByCount "20" @default.
- W1134508972 countsByYear W11345089722015 @default.
- W1134508972 countsByYear W11345089722016 @default.
- W1134508972 countsByYear W11345089722018 @default.
- W1134508972 countsByYear W11345089722019 @default.
- W1134508972 countsByYear W11345089722020 @default.
- W1134508972 countsByYear W11345089722021 @default.
- W1134508972 countsByYear W11345089722022 @default.
- W1134508972 crossrefType "book-chapter" @default.
- W1134508972 hasAuthorship W1134508972A5022945960 @default.
- W1134508972 hasAuthorship W1134508972A5044961357 @default.
- W1134508972 hasAuthorship W1134508972A5079324810 @default.
- W1134508972 hasConcept C115903868 @default.
- W1134508972 hasConcept C119857082 @default.
- W1134508972 hasConcept C124101348 @default.
- W1134508972 hasConcept C154945302 @default.
- W1134508972 hasConcept C165696696 @default.
- W1134508972 hasConcept C2776145971 @default.
- W1134508972 hasConcept C38652104 @default.
- W1134508972 hasConcept C41008148 @default.
- W1134508972 hasConcept C51632099 @default.
- W1134508972 hasConcept C55166926 @default.
- W1134508972 hasConcept C95623464 @default.
- W1134508972 hasConceptScore W1134508972C115903868 @default.
- W1134508972 hasConceptScore W1134508972C119857082 @default.
- W1134508972 hasConceptScore W1134508972C124101348 @default.
- W1134508972 hasConceptScore W1134508972C154945302 @default.
- W1134508972 hasConceptScore W1134508972C165696696 @default.
- W1134508972 hasConceptScore W1134508972C2776145971 @default.
- W1134508972 hasConceptScore W1134508972C38652104 @default.
- W1134508972 hasConceptScore W1134508972C41008148 @default.
- W1134508972 hasConceptScore W1134508972C51632099 @default.
- W1134508972 hasConceptScore W1134508972C55166926 @default.
- W1134508972 hasConceptScore W1134508972C95623464 @default.
- W1134508972 hasLocation W11345089721 @default.
- W1134508972 hasOpenAccess W1134508972 @default.
- W1134508972 hasPrimaryLocation W11345089721 @default.
- W1134508972 hasRelatedWork W1134508972 @default.
- W1134508972 hasRelatedWork W2044507188 @default.
- W1134508972 hasRelatedWork W2151561819 @default.
- W1134508972 hasRelatedWork W2474469336 @default.
- W1134508972 hasRelatedWork W2514090203 @default.
- W1134508972 hasRelatedWork W2556319748 @default.
- W1134508972 hasRelatedWork W2734997742 @default.
- W1134508972 hasRelatedWork W2797776314 @default.
- W1134508972 hasRelatedWork W3200179079 @default.
- W1134508972 hasRelatedWork W796196586 @default.
- W1134508972 isParatext "false" @default.
- W1134508972 isRetracted "false" @default.
- W1134508972 magId "1134508972" @default.
- W1134508972 workType "book-chapter" @default.