Matches in SemOpenAlex for { <https://semopenalex.org/work/W113733032> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W113733032 abstract "5BRoad traffic accidents (RTAs) are one of the major causes of death in Sudan, notably in the age group of 20 to 40 that constitutes 44% of the population. Fatality rate per 10,000 vehicles is one of the highest in the world, in spite of Sudan’s low vehicle-per-capita ratio of 125 persons per car (average value over the last 20 years). Thus, it signifies the importance of properly analyzing traffic accident data and predicting casualties. Such studies will explore the underlying causes of RTAs and thereby develop appropriate safety measures to reduce RTA casualties. In this paper, analysis and prediction of RTAs in Sudan were undertaken using Artificial Neural Networks (ANNs). ANN is a powerful technique that has demonstrated considerable success in analyzing historical data to predict future trends. However, the use of ANNs in the area of traffic engineering and accidents analysis is relatively new and rare. Input variables to ANN model were carefully selected through examining the strength of the correlation between the annual number of accidents and related variables such as annual population growth, gross domestic product, number of driving licenses issued annually, etc. For further validation of the model, principle component regression (PCR) technique was used to fit the same data. Both approaches attempted to model accidents using historical data on related factors, such as population, number of cars on the road and so on, covering the period from 1991 to 2009. Forecasts for the years 2005 to 2012 were made using ANNs and principle component regression method. Analysis using ANNs resulted in the best fit for the data with high R. However, both methods provided forecasts that were very similar in values. The study showed that ANNs are more suitable for interpolation than extrapolation. Nevertheless, it demonstrates that ANNs provide a potentially powerful tool in analyzing and forecasting traffic accidents and casualties." @default.
- W113733032 created "2016-06-24" @default.
- W113733032 creator A5030963108 @default.
- W113733032 creator A5049091678 @default.
- W113733032 date "2011-07-01" @default.
- W113733032 modified "2023-09-24" @default.
- W113733032 title "Comparative analysis and prediction of traffic accidents in Sudan using artificial neural networks and statistical methods." @default.
- W113733032 cites W1536066714 @default.
- W113733032 cites W2012777356 @default.
- W113733032 cites W2038175992 @default.
- W113733032 cites W2091543927 @default.
- W113733032 cites W263708017 @default.
- W113733032 cites W2890404 @default.
- W113733032 hasPublicationYear "2011" @default.
- W113733032 type Work @default.
- W113733032 sameAs 113733032 @default.
- W113733032 citedByCount "1" @default.
- W113733032 countsByYear W1137330322019 @default.
- W113733032 crossrefType "journal-article" @default.
- W113733032 hasAuthorship W113733032A5030963108 @default.
- W113733032 hasAuthorship W113733032A5049091678 @default.
- W113733032 hasConcept C105795698 @default.
- W113733032 hasConcept C114350782 @default.
- W113733032 hasConcept C127413603 @default.
- W113733032 hasConcept C127598652 @default.
- W113733032 hasConcept C144024400 @default.
- W113733032 hasConcept C149923435 @default.
- W113733032 hasConcept C152877465 @default.
- W113733032 hasConcept C154945302 @default.
- W113733032 hasConcept C162324750 @default.
- W113733032 hasConcept C205649164 @default.
- W113733032 hasConcept C22212356 @default.
- W113733032 hasConcept C2908647359 @default.
- W113733032 hasConcept C33923547 @default.
- W113733032 hasConcept C41008148 @default.
- W113733032 hasConcept C50522688 @default.
- W113733032 hasConcept C50644808 @default.
- W113733032 hasConceptScore W113733032C105795698 @default.
- W113733032 hasConceptScore W113733032C114350782 @default.
- W113733032 hasConceptScore W113733032C127413603 @default.
- W113733032 hasConceptScore W113733032C127598652 @default.
- W113733032 hasConceptScore W113733032C144024400 @default.
- W113733032 hasConceptScore W113733032C149923435 @default.
- W113733032 hasConceptScore W113733032C152877465 @default.
- W113733032 hasConceptScore W113733032C154945302 @default.
- W113733032 hasConceptScore W113733032C162324750 @default.
- W113733032 hasConceptScore W113733032C205649164 @default.
- W113733032 hasConceptScore W113733032C22212356 @default.
- W113733032 hasConceptScore W113733032C2908647359 @default.
- W113733032 hasConceptScore W113733032C33923547 @default.
- W113733032 hasConceptScore W113733032C41008148 @default.
- W113733032 hasConceptScore W113733032C50522688 @default.
- W113733032 hasConceptScore W113733032C50644808 @default.
- W113733032 hasLocation W1137330321 @default.
- W113733032 hasOpenAccess W113733032 @default.
- W113733032 hasPrimaryLocation W1137330321 @default.
- W113733032 hasRelatedWork W1489665366 @default.
- W113733032 hasRelatedWork W1580217170 @default.
- W113733032 hasRelatedWork W1608917522 @default.
- W113733032 hasRelatedWork W1859365938 @default.
- W113733032 hasRelatedWork W2149279132 @default.
- W113733032 hasRelatedWork W2323358975 @default.
- W113733032 hasRelatedWork W2331114518 @default.
- W113733032 hasRelatedWork W2340556095 @default.
- W113733032 hasRelatedWork W2383570411 @default.
- W113733032 hasRelatedWork W2610192370 @default.
- W113733032 hasRelatedWork W2789547692 @default.
- W113733032 hasRelatedWork W2811202085 @default.
- W113733032 hasRelatedWork W2896641569 @default.
- W113733032 hasRelatedWork W2901275162 @default.
- W113733032 hasRelatedWork W2977815365 @default.
- W113733032 hasRelatedWork W3161998278 @default.
- W113733032 hasRelatedWork W3164690557 @default.
- W113733032 hasRelatedWork W3185189500 @default.
- W113733032 hasRelatedWork W3199808110 @default.
- W113733032 hasRelatedWork W3211963704 @default.
- W113733032 isParatext "false" @default.
- W113733032 isRetracted "false" @default.
- W113733032 magId "113733032" @default.
- W113733032 workType "article" @default.