Matches in SemOpenAlex for { <https://semopenalex.org/work/W1141194620> ?p ?o ?g. }
- W1141194620 abstract "Revealing hidden patterns in astronomical data is often the path to fundamental scientific breakthroughs; meanwhile the complexity of scientific inquiry increases as more subtle relationships are sought. Contemporary data analysis problems often elude the capabilities of classical statistical techniques, suggesting the use of cutting edge statistical methods. In this light, astronomers have overlooked a whole family of statistical techniques for exploratory data analysis and robust regression, the so-called Generalized Linear Models (GLMs). In this paper ‐ the first in a series aimed at illustrating the power of these methods in astronomical applications ‐ we elucidate the potential of a particular class of GLMs for handling binary/binomial data, the so-called logit and probit regression techniques, from both a maximum likelihood and a Bayesian perspective. As a case in point, we present the use of these GLMs to explore the conditions of star formation activity and metal enrichment in primordial minihaloes from cosmological hydro-simulations including detailed chemistry, gas physics, and stellar feedback. Finally, we highlight the use of receiver operating characteristic curves as a diagnostic for binary classifiers, and ultimately we use these to demonstrate the competitive predictive performance of GLMs against the popular technique of artificial neural networks." @default.
- W1141194620 created "2016-06-24" @default.
- W1141194620 creator A5000669585 @default.
- W1141194620 creator A5008195414 @default.
- W1141194620 creator A5018561836 @default.
- W1141194620 creator A5020702131 @default.
- W1141194620 creator A5034547685 @default.
- W1141194620 creator A5034596650 @default.
- W1141194620 creator A5063375518 @default.
- W1141194620 date "2014-09-26" @default.
- W1141194620 modified "2023-10-17" @default.
- W1141194620 title "The Overlooked Potential of Generalized Linear Models in Astronomy - I: Binomial Regression and Numerical Simulations" @default.
- W1141194620 cites W117592956 @default.
- W1141194620 cites W1494846899 @default.
- W1141194620 cites W1504480307 @default.
- W1141194620 cites W1513618424 @default.
- W1141194620 cites W1528708126 @default.
- W1141194620 cites W1528905581 @default.
- W1141194620 cites W1554663460 @default.
- W1141194620 cites W1554944419 @default.
- W1141194620 cites W1666519152 @default.
- W1141194620 cites W1960905533 @default.
- W1141194620 cites W1975294442 @default.
- W1141194620 cites W1975549749 @default.
- W1141194620 cites W1982706728 @default.
- W1141194620 cites W1983471014 @default.
- W1141194620 cites W2001825947 @default.
- W1141194620 cites W2004632788 @default.
- W1141194620 cites W2006796627 @default.
- W1141194620 cites W2014581807 @default.
- W1141194620 cites W2015295900 @default.
- W1141194620 cites W2020187870 @default.
- W1141194620 cites W2020550188 @default.
- W1141194620 cites W2021347741 @default.
- W1141194620 cites W2029047760 @default.
- W1141194620 cites W2041278781 @default.
- W1141194620 cites W2052787879 @default.
- W1141194620 cites W2057934017 @default.
- W1141194620 cites W2066469075 @default.
- W1141194620 cites W2068860926 @default.
- W1141194620 cites W2073952217 @default.
- W1141194620 cites W2074106980 @default.
- W1141194620 cites W2074282020 @default.
- W1141194620 cites W2082216614 @default.
- W1141194620 cites W2086880647 @default.
- W1141194620 cites W2098623259 @default.
- W1141194620 cites W2106337298 @default.
- W1141194620 cites W2107245108 @default.
- W1141194620 cites W2108306139 @default.
- W1141194620 cites W2110939566 @default.
- W1141194620 cites W2113888497 @default.
- W1141194620 cites W2114933536 @default.
- W1141194620 cites W2119177484 @default.
- W1141194620 cites W2120323988 @default.
- W1141194620 cites W2121001050 @default.
- W1141194620 cites W2131462587 @default.
- W1141194620 cites W2142635246 @default.
- W1141194620 cites W2149860264 @default.
- W1141194620 cites W2151702424 @default.
- W1141194620 cites W2166163519 @default.
- W1141194620 cites W2168175751 @default.
- W1141194620 cites W2303630760 @default.
- W1141194620 cites W2317739826 @default.
- W1141194620 cites W2397594846 @default.
- W1141194620 cites W2795870763 @default.
- W1141194620 cites W2799061466 @default.
- W1141194620 cites W2801490189 @default.
- W1141194620 cites W3013289126 @default.
- W1141194620 cites W3100019432 @default.
- W1141194620 cites W3102375180 @default.
- W1141194620 cites W563289791 @default.
- W1141194620 cites W609962781 @default.
- W1141194620 cites W618548231 @default.
- W1141194620 hasPublicationYear "2014" @default.
- W1141194620 type Work @default.
- W1141194620 sameAs 1141194620 @default.
- W1141194620 citedByCount "1" @default.
- W1141194620 countsByYear W11411946202015 @default.
- W1141194620 crossrefType "posted-content" @default.
- W1141194620 hasAuthorship W1141194620A5000669585 @default.
- W1141194620 hasAuthorship W1141194620A5008195414 @default.
- W1141194620 hasAuthorship W1141194620A5018561836 @default.
- W1141194620 hasAuthorship W1141194620A5020702131 @default.
- W1141194620 hasAuthorship W1141194620A5034547685 @default.
- W1141194620 hasAuthorship W1141194620A5034596650 @default.
- W1141194620 hasAuthorship W1141194620A5063375518 @default.
- W1141194620 hasConcept C100906024 @default.
- W1141194620 hasConcept C105795698 @default.
- W1141194620 hasConcept C107673813 @default.
- W1141194620 hasConcept C114289077 @default.
- W1141194620 hasConcept C114494560 @default.
- W1141194620 hasConcept C119857082 @default.
- W1141194620 hasConcept C140331021 @default.
- W1141194620 hasConcept C152877465 @default.
- W1141194620 hasConcept C154945302 @default.
- W1141194620 hasConcept C184314375 @default.
- W1141194620 hasConcept C199335787 @default.
- W1141194620 hasConcept C2779190172 @default.
- W1141194620 hasConcept C2781315470 @default.
- W1141194620 hasConcept C33923547 @default.