Matches in SemOpenAlex for { <https://semopenalex.org/work/W1145039256> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W1145039256 abstract "In recent years Multiple Input Multiple Output (MIMO) systems have been employed in wireless communication systems to reach the goals of high data rate. A MIMO use multiple antennas at both transmitting and receiving ends. These antennas communicate with each other on the same frequency band and help in linearly increasing the channel capacity. Due to the multi paths wireless channels face the problem of channel fading which cause Inter Symbol Interference (ISI). Each channel path has an independent path delay, independent path loss or path gain and phase shift, cause deformations in a signal and due to this deformation the receiver can detect a wrong or a distorted signal. To remove this fading effect of channel from received signal many Neural Network (NN) based channel equalizers have been proposed in literature. Due to high level non-linearity, NN can be efficient to decode transmitted symbols that are effected by fading channels. The task of channel equalization can also be considered as a classification job. In the data (received symbol sequences) spaces NN can easily make decision regions. Specifically, NN has the universal approximation capability and form decision regions with arbitrarily shaped boundaries. This property supports the NN to be introduced and perform the task of channel equalization and symbol detection. This research project presents the implementation of NN to be use as a channel equalizer for Rayleigh fading channels causing ISI in MIMO systems. Channel equalization has been done using NN as a classification problem. The equalizer is implemented over MIMO system of different forms using Quadrature Amplitude Modulation scheme (4QAM & 16QAM) signals. Levenberg-Marquardt (LM), One Step Secant (OSS), Gradient Descent (GD), Resilient backpropagation (Rprop) and Conjugate Gradient (CG) algorithms are used for the training of NN. The Weights calculated during the training process provides the equalization matrix as an estimate of Channel. The output of the NN provides the estimate of transmitted signals. The equalizer is assessed in terms of Symbol Error Rate (SER) and equalizer efficiency." @default.
- W1145039256 created "2016-06-24" @default.
- W1145039256 creator A5015970282 @default.
- W1145039256 creator A5072076353 @default.
- W1145039256 date "2013-01-01" @default.
- W1145039256 modified "2023-09-23" @default.
- W1145039256 title "MIMO Channel Equalization and Symbol Detection using Multilayer Neural Network" @default.
- W1145039256 hasPublicationYear "2013" @default.
- W1145039256 type Work @default.
- W1145039256 sameAs 1145039256 @default.
- W1145039256 citedByCount "0" @default.
- W1145039256 crossrefType "journal-article" @default.
- W1145039256 hasAuthorship W1145039256A5015970282 @default.
- W1145039256 hasAuthorship W1145039256A5072076353 @default.
- W1145039256 hasConcept C127162648 @default.
- W1145039256 hasConcept C127413603 @default.
- W1145039256 hasConcept C207987634 @default.
- W1145039256 hasConcept C24326235 @default.
- W1145039256 hasConcept C41008148 @default.
- W1145039256 hasConcept C56985126 @default.
- W1145039256 hasConcept C75755367 @default.
- W1145039256 hasConcept C76155785 @default.
- W1145039256 hasConcept C81978471 @default.
- W1145039256 hasConceptScore W1145039256C127162648 @default.
- W1145039256 hasConceptScore W1145039256C127413603 @default.
- W1145039256 hasConceptScore W1145039256C207987634 @default.
- W1145039256 hasConceptScore W1145039256C24326235 @default.
- W1145039256 hasConceptScore W1145039256C41008148 @default.
- W1145039256 hasConceptScore W1145039256C56985126 @default.
- W1145039256 hasConceptScore W1145039256C75755367 @default.
- W1145039256 hasConceptScore W1145039256C76155785 @default.
- W1145039256 hasConceptScore W1145039256C81978471 @default.
- W1145039256 hasLocation W11450392561 @default.
- W1145039256 hasOpenAccess W1145039256 @default.
- W1145039256 hasPrimaryLocation W11450392561 @default.
- W1145039256 hasRelatedWork W1499114154 @default.
- W1145039256 hasRelatedWork W1564644945 @default.
- W1145039256 hasRelatedWork W1570268980 @default.
- W1145039256 hasRelatedWork W2092816602 @default.
- W1145039256 hasRelatedWork W2111009260 @default.
- W1145039256 hasRelatedWork W2147441530 @default.
- W1145039256 hasRelatedWork W2167978202 @default.
- W1145039256 hasRelatedWork W2353389553 @default.
- W1145039256 hasRelatedWork W2557908093 @default.
- W1145039256 hasRelatedWork W2790721964 @default.
- W1145039256 hasRelatedWork W2920226995 @default.
- W1145039256 hasRelatedWork W3003524576 @default.
- W1145039256 hasRelatedWork W3011984830 @default.
- W1145039256 hasRelatedWork W3016116780 @default.
- W1145039256 hasRelatedWork W3113793143 @default.
- W1145039256 hasRelatedWork W3154978752 @default.
- W1145039256 hasRelatedWork W3198158195 @default.
- W1145039256 hasRelatedWork W2185806123 @default.
- W1145039256 hasRelatedWork W2185998341 @default.
- W1145039256 hasRelatedWork W2187090327 @default.
- W1145039256 isParatext "false" @default.
- W1145039256 isRetracted "false" @default.
- W1145039256 magId "1145039256" @default.
- W1145039256 workType "article" @default.