Matches in SemOpenAlex for { <https://semopenalex.org/work/W114550829> ?p ?o ?g. }
- W114550829 abstract "The dissertation is concerned with the mathematical study of various problems. First, three real-world networks are considered: (i) the human brain (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a and point of view. After studying these three real-world networks, two abstract problems are also explored, which are motivated by power systems. The first one is optimization over a flow network and the second one is optimization over a generalized weighted The results derived in this dissertation are summarized below. Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the resources are shared efficiently. A model is derived in this work for the behavior of the under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used. Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power minimizing the total power generation cost subject to and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time.Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow is considered. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption. Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex-valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. (Abstract shortened by UMI.)" @default.
- W114550829 created "2016-06-24" @default.
- W114550829 creator A5072786751 @default.
- W114550829 creator A5085737537 @default.
- W114550829 date "2013-01-01" @default.
- W114550829 modified "2023-09-27" @default.
- W114550829 title "Mathematical study of complex networks: brain, internet, and power grid" @default.
- W114550829 cites W132163161 @default.
- W114550829 cites W1507082306 @default.
- W114550829 cites W1523767002 @default.
- W114550829 cites W1552561242 @default.
- W114550829 cites W1572996156 @default.
- W114550829 cites W1582056940 @default.
- W114550829 cites W1606052501 @default.
- W114550829 cites W1807779280 @default.
- W114550829 cites W1876349971 @default.
- W114550829 cites W1899296442 @default.
- W114550829 cites W1916337001 @default.
- W114550829 cites W1964119857 @default.
- W114550829 cites W1964577612 @default.
- W114550829 cites W1968878112 @default.
- W114550829 cites W1969266707 @default.
- W114550829 cites W1970131865 @default.
- W114550829 cites W1971600338 @default.
- W114550829 cites W1977545325 @default.
- W114550829 cites W1978282571 @default.
- W114550829 cites W1978666418 @default.
- W114550829 cites W1979272168 @default.
- W114550829 cites W1980656974 @default.
- W114550829 cites W1984050705 @default.
- W114550829 cites W1985123706 @default.
- W114550829 cites W1987497363 @default.
- W114550829 cites W1990137274 @default.
- W114550829 cites W1994717387 @default.
- W114550829 cites W2000247330 @default.
- W114550829 cites W2003672952 @default.
- W114550829 cites W2005102197 @default.
- W114550829 cites W2006704773 @default.
- W114550829 cites W2007104311 @default.
- W114550829 cites W2010997912 @default.
- W114550829 cites W2012436088 @default.
- W114550829 cites W2014035031 @default.
- W114550829 cites W2014793162 @default.
- W114550829 cites W2044970534 @default.
- W114550829 cites W2045068465 @default.
- W114550829 cites W2045148236 @default.
- W114550829 cites W2050943404 @default.
- W114550829 cites W2051290577 @default.
- W114550829 cites W2053254868 @default.
- W114550829 cites W2058677708 @default.
- W114550829 cites W2059453395 @default.
- W114550829 cites W2062451421 @default.
- W114550829 cites W2063046368 @default.
- W114550829 cites W2072642243 @default.
- W114550829 cites W2073440460 @default.
- W114550829 cites W2076426934 @default.
- W114550829 cites W2077230226 @default.
- W114550829 cites W2083895369 @default.
- W114550829 cites W2086664392 @default.
- W114550829 cites W2088036020 @default.
- W114550829 cites W2091260897 @default.
- W114550829 cites W2095570364 @default.
- W114550829 cites W2100200526 @default.
- W114550829 cites W2101182788 @default.
- W114550829 cites W2102674521 @default.
- W114550829 cites W2103002522 @default.
- W114550829 cites W2103643667 @default.
- W114550829 cites W2104106131 @default.
- W114550829 cites W2104255928 @default.
- W114550829 cites W2106067217 @default.
- W114550829 cites W2107632563 @default.
- W114550829 cites W2110540077 @default.
- W114550829 cites W2111416445 @default.
- W114550829 cites W2111653328 @default.
- W114550829 cites W2112938311 @default.
- W114550829 cites W2114467398 @default.
- W114550829 cites W2115992973 @default.
- W114550829 cites W2116048200 @default.
- W114550829 cites W2116649573 @default.
- W114550829 cites W2117663940 @default.
- W114550829 cites W2118050239 @default.
- W114550829 cites W2118550318 @default.
- W114550829 cites W2118687002 @default.
- W114550829 cites W2120086273 @default.
- W114550829 cites W2122700623 @default.
- W114550829 cites W2123568024 @default.
- W114550829 cites W2123586737 @default.
- W114550829 cites W2128166312 @default.
- W114550829 cites W2128757878 @default.
- W114550829 cites W2132555912 @default.
- W114550829 cites W2133726159 @default.
- W114550829 cites W2133919892 @default.
- W114550829 cites W2134172715 @default.
- W114550829 cites W2134869843 @default.
- W114550829 cites W2135046866 @default.
- W114550829 cites W2137994045 @default.
- W114550829 cites W2141380252 @default.
- W114550829 cites W2141907517 @default.
- W114550829 cites W2145367961 @default.
- W114550829 cites W2147524058 @default.