Matches in SemOpenAlex for { <https://semopenalex.org/work/W1146570110> ?p ?o ?g. }
- W1146570110 abstract "In this thesis, we deal with dierent applications of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. The AdS/CFT correspondence, which is also more generally referred to as gauge/gravity duality, is a conjectured duality in superstring theory between strongly-coupled four-dimensional N = 4 super- conformal Yang-Mills theory and weakly-coupled type IIB string theory in ve- dimensional AdS spacetime. This duality provides a powerful method to investi- gate strongly-coupled low-energy systems in four dimensions by substitutionally carrying out calculations in ve-dimensional weakly-coupled supergravity. In this work, we use the AdS/CFT correspondence to explore three dierent strongly- coupled systems, namely a brane world accommodating a strongly-coupled eld theory, a strongly-coupled uid on a three-sphere and a strongly-coupled p-wave super uid. In all these cases, the dual supergravity descriptions involve charged AdS black holes. The rst system studied here is a Randall-Sundrum brane world moving in the background of a ve-dimensional non-extremal black hole of N = 2 gauged supergravity. The equations of motion of the brane are found to be equal to the Friedmann-Robertson-Walker (FRW) equations for a closed universe. The closed brane universe has special thermodynamic properties. The energy of the brane eld theory exhibits a subextensive Casimir contribution, and the entropy can be expressed as a Cardy-Verlinde-type formula. We show that the equations for both quantities can take forms that strongly resemble the two FRW equations. At the horizon of the black hole, these two sets of equations are shown to even merge with each other which might suggest the existence of a common underlying theory. In addition, as a by-product result, the non-extremal black hole solutions considered here are found to admit an alternative description in terms of rst-order ow equations similar to those which are well-known from the attractor mechanism of extremal black holes in string theory. The second system to explore here is a conformal uid propagating on a three- sphere. Due to the nite volume of the three-sphere the total energy again contains a subextensive Casimir contribution. We investigate possible corrections to the famous ratio of shear viscosity to entropy density =s = ~ = (4 k B ) in case of uids on a three-sphere. For this purpose, we construct dierent deformed black hole solutions on the basis of the AdS-STU black holes of N = 2 gauged supergravity. These new black hole solutions are dual to dierent uids with a specied uid ow. Then, we compute the corresponding uid energy-momentum tensors. It turns out that the shear viscosity receives a positive correction at third order in the derivative expansion of the energy-momentum tensor which is proportional to the curvature of the three-sphere. The third system, which we investigate, is a p-wave super uid. For this pur- pose, we numerically construct the dual non-Abelian AdS black hole solution with a at horizon in SU (2) Einstein-Yang-Mills theory, taking the full back-reaction of the gauge elds on the geometry into account. For suciently low tempera- ture, this black hole solution develops vector hair which in the dual eld theory corresponds to a phase transition to a super uid state with spontaneously bro- ken rotational symmetry. The bulk theory has a single free parameter, the ratio of the ve-dimensional gravitational constant to the Yang-Mills coupling con- stant, which we denote as . We nd that for values of above a critical value c = 0 : 365 0 : 001, the transition changes from second to rst order. This thesis is based on work which was carried out by the author between March 2007 and May 2010 at the Max-Planck Institute for Physics in Munich, and which was published in [1-3]." @default.
- W1146570110 created "2016-06-24" @default.
- W1146570110 creator A5030011260 @default.
- W1146570110 date "2016-02-04" @default.
- W1146570110 modified "2023-09-27" @default.
- W1146570110 title "Applications of gauge/gravity dualities with charged Anti-de Sitter black holes" @default.
- W1146570110 cites W1451104134 @default.
- W1146570110 cites W1485656287 @default.
- W1146570110 cites W1486858061 @default.
- W1146570110 cites W1498866755 @default.
- W1146570110 cites W1503579345 @default.
- W1146570110 cites W1513185481 @default.
- W1146570110 cites W1528258271 @default.
- W1146570110 cites W1548485747 @default.
- W1146570110 cites W1583746591 @default.
- W1146570110 cites W1663628769 @default.
- W1146570110 cites W1666651936 @default.
- W1146570110 cites W1672059830 @default.
- W1146570110 cites W1889142700 @default.
- W1146570110 cites W1963842501 @default.
- W1146570110 cites W1963973334 @default.
- W1146570110 cites W1964243314 @default.
- W1146570110 cites W1969687451 @default.
- W1146570110 cites W1970959268 @default.
- W1146570110 cites W1971606033 @default.
- W1146570110 cites W1973177383 @default.
- W1146570110 cites W1985071512 @default.
- W1146570110 cites W1990522170 @default.
- W1146570110 cites W1990932852 @default.
- W1146570110 cites W1990980799 @default.
- W1146570110 cites W1992872919 @default.
- W1146570110 cites W1993389046 @default.
- W1146570110 cites W1994563639 @default.
- W1146570110 cites W2002928898 @default.
- W1146570110 cites W2004345680 @default.
- W1146570110 cites W2005173190 @default.
- W1146570110 cites W2010271815 @default.
- W1146570110 cites W2011757658 @default.
- W1146570110 cites W2013872415 @default.
- W1146570110 cites W2023430982 @default.
- W1146570110 cites W2023953089 @default.
- W1146570110 cites W2025492397 @default.
- W1146570110 cites W2028078931 @default.
- W1146570110 cites W2031004362 @default.
- W1146570110 cites W2034646715 @default.
- W1146570110 cites W2034740401 @default.
- W1146570110 cites W2036105527 @default.
- W1146570110 cites W2039931157 @default.
- W1146570110 cites W2041713524 @default.
- W1146570110 cites W2043058382 @default.
- W1146570110 cites W2043369240 @default.
- W1146570110 cites W2044183465 @default.
- W1146570110 cites W2045250792 @default.
- W1146570110 cites W2047976308 @default.
- W1146570110 cites W2049610538 @default.
- W1146570110 cites W2054213422 @default.
- W1146570110 cites W2055276323 @default.
- W1146570110 cites W2055990268 @default.
- W1146570110 cites W2057855483 @default.
- W1146570110 cites W2058145089 @default.
- W1146570110 cites W2058907603 @default.
- W1146570110 cites W2060106585 @default.
- W1146570110 cites W2060358789 @default.
- W1146570110 cites W2062236203 @default.
- W1146570110 cites W2064777467 @default.
- W1146570110 cites W2064970198 @default.
- W1146570110 cites W2068004405 @default.
- W1146570110 cites W2068191795 @default.
- W1146570110 cites W2068368176 @default.
- W1146570110 cites W2069063871 @default.
- W1146570110 cites W2069862494 @default.
- W1146570110 cites W2070197840 @default.
- W1146570110 cites W2073945442 @default.
- W1146570110 cites W2077881510 @default.
- W1146570110 cites W2081882103 @default.
- W1146570110 cites W2087588109 @default.
- W1146570110 cites W2090386790 @default.
- W1146570110 cites W2091825069 @default.
- W1146570110 cites W2092579709 @default.
- W1146570110 cites W2093385241 @default.
- W1146570110 cites W2093884093 @default.
- W1146570110 cites W2095721433 @default.
- W1146570110 cites W2097909025 @default.
- W1146570110 cites W2099204364 @default.
- W1146570110 cites W2101449797 @default.
- W1146570110 cites W2101729266 @default.
- W1146570110 cites W2103261494 @default.
- W1146570110 cites W2103533820 @default.
- W1146570110 cites W2105835467 @default.
- W1146570110 cites W2106902517 @default.
- W1146570110 cites W2107240173 @default.
- W1146570110 cites W2110694977 @default.
- W1146570110 cites W2112531055 @default.
- W1146570110 cites W2114037905 @default.
- W1146570110 cites W2114921162 @default.
- W1146570110 cites W2114934226 @default.
- W1146570110 cites W2118613219 @default.
- W1146570110 cites W2123049745 @default.
- W1146570110 cites W2124105624 @default.
- W1146570110 cites W2124590498 @default.