Matches in SemOpenAlex for { <https://semopenalex.org/work/W115672173> ?p ?o ?g. }
- W115672173 abstract "To determine if two given lists of numbers are the same set, we would sort both lists and see if we get the same result. The sorted list is a canonical form for the equivalence relation of set equality. Other canonical forms for equivalences arise in graph isomorphism and its variants, and the equality of permutation groups given by generators. To determine if two given graphs are cospectral, however, we compute their characteristic polynomials and see if they are the same; the characteristic polynomial is a complete invariant for the equivalence relation of cospectrality. This is weaker than a canonical form, and it is not known whether a canonical form for cospectrality exists. Note that it is a priori possible for an equivalence relation to be decidable in polynomial time without either a complete invariant or canonical form. Blass and Gurevich (“Equivalence relations, invariants, and normal forms, I and II”, 1984) ask whether these conditions on equivalence relations – having an FP canonical form, having an FP complete invariant, and simply being in P – are in fact different. They showed that this question requires non-relativizing techniques to resolve. Here we extend their results using generic oracles, and give new connections to probabilistic and quantum computation. We denote the class of equivalence problems in P by PEq, the class of problems with complete FP invariants Ker, and the class with FP canonical forms CF; CF ⊆ Ker ⊆ PEq, and we ask whether these inclusions are proper. If x ∼ y implies |y| ≤ poly(|x|), we say that ∼ is polynomially bounded; we denote the corresponding classes of equivalence relation CFp, Kerp, and PEqp. Our main results are: • If CF = PEq then NP = UP = RP and thus PH = BPP; • If CF = Ker then NP = UP, PH = ZPP NP , integers can be factored in probabilistic polynomial time, and deterministic collision-free hash functions do not exist;" @default.
- W115672173 created "2016-06-24" @default.
- W115672173 creator A5062065155 @default.
- W115672173 date "2008-01-01" @default.
- W115672173 modified "2023-09-27" @default.
- W115672173 title "The Complexity of Equivalence Relations" @default.
- W115672173 cites W124759327 @default.
- W115672173 cites W1493969756 @default.
- W115672173 cites W1517154004 @default.
- W115672173 cites W1537195693 @default.
- W115672173 cites W1560182867 @default.
- W115672173 cites W1590283810 @default.
- W115672173 cites W1631356911 @default.
- W115672173 cites W1671272902 @default.
- W115672173 cites W1964053266 @default.
- W115672173 cites W1964234068 @default.
- W115672173 cites W1967159037 @default.
- W115672173 cites W1967900748 @default.
- W115672173 cites W1970439855 @default.
- W115672173 cites W1970606468 @default.
- W115672173 cites W1973322735 @default.
- W115672173 cites W1974672137 @default.
- W115672173 cites W1981741030 @default.
- W115672173 cites W1984509356 @default.
- W115672173 cites W1984976620 @default.
- W115672173 cites W1989114462 @default.
- W115672173 cites W1989978772 @default.
- W115672173 cites W1992972561 @default.
- W115672173 cites W1997198079 @default.
- W115672173 cites W1998777945 @default.
- W115672173 cites W1999384241 @default.
- W115672173 cites W2000070319 @default.
- W115672173 cites W2003824380 @default.
- W115672173 cites W2007464118 @default.
- W115672173 cites W2008999657 @default.
- W115672173 cites W2011042573 @default.
- W115672173 cites W2011112377 @default.
- W115672173 cites W2011358434 @default.
- W115672173 cites W2014357220 @default.
- W115672173 cites W2014917736 @default.
- W115672173 cites W2015393471 @default.
- W115672173 cites W2016474213 @default.
- W115672173 cites W2016588822 @default.
- W115672173 cites W2017024025 @default.
- W115672173 cites W2018099718 @default.
- W115672173 cites W2032830293 @default.
- W115672173 cites W2033040247 @default.
- W115672173 cites W2035742807 @default.
- W115672173 cites W2036095420 @default.
- W115672173 cites W2036265926 @default.
- W115672173 cites W2036318904 @default.
- W115672173 cites W2043280328 @default.
- W115672173 cites W2043360684 @default.
- W115672173 cites W2046021036 @default.
- W115672173 cites W2052936500 @default.
- W115672173 cites W2057065544 @default.
- W115672173 cites W2065672077 @default.
- W115672173 cites W2069652878 @default.
- W115672173 cites W2072242455 @default.
- W115672173 cites W2073623289 @default.
- W115672173 cites W2077202644 @default.
- W115672173 cites W2079192595 @default.
- W115672173 cites W2081812591 @default.
- W115672173 cites W2085634981 @default.
- W115672173 cites W2089546742 @default.
- W115672173 cites W2093712769 @default.
- W115672173 cites W2096390054 @default.
- W115672173 cites W2097206148 @default.
- W115672173 cites W2097358487 @default.
- W115672173 cites W2098626016 @default.
- W115672173 cites W2113244484 @default.
- W115672173 cites W2117584890 @default.
- W115672173 cites W2117872989 @default.
- W115672173 cites W2125057414 @default.
- W115672173 cites W2131798840 @default.
- W115672173 cites W2134839489 @default.
- W115672173 cites W2135550305 @default.
- W115672173 cites W2139569497 @default.
- W115672173 cites W2140053302 @default.
- W115672173 cites W2140778396 @default.
- W115672173 cites W2141884608 @default.
- W115672173 cites W2148373594 @default.
- W115672173 cites W2148957455 @default.
- W115672173 cites W2151536080 @default.
- W115672173 cites W2160461541 @default.
- W115672173 cites W2168676717 @default.
- W115672173 cites W2171389569 @default.
- W115672173 cites W25732316 @default.
- W115672173 cites W2611247211 @default.
- W115672173 cites W2791520396 @default.
- W115672173 cites W2913680170 @default.
- W115672173 cites W2914873732 @default.
- W115672173 cites W2962738101 @default.
- W115672173 cites W2984059665 @default.
- W115672173 cites W3697511 @default.
- W115672173 cites W83921509 @default.
- W115672173 cites W1496469208 @default.
- W115672173 hasPublicationYear "2008" @default.
- W115672173 type Work @default.
- W115672173 sameAs 115672173 @default.