Matches in SemOpenAlex for { <https://semopenalex.org/work/W115816039> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W115816039 endingPage "8" @default.
- W115816039 startingPage "434" @default.
- W115816039 abstract "A methodology based on the fuzzy set theory and the convolution neural network (CNN) architecture is proposed to tackle the problem of reducing false-positive rate in automatic lung nodule detection. The CNN which simulates human visual mechanism was trained by a supervised back-propagation algorithm based on fuzzy membership functions. The training and testing database consists of image blocks (each 32 x 32 pixels) of suspected lung nodule areas (nodule candidates) which were generated from our pre-scanning program [1]. A linguistic label was assigned to each nodule candidate of the training set, then the label was converted to a membership value through a pre-defined membership function and used as teaching signal (desired outputs) during the network learning. Before the nodule candidate was fed to the network input, it was pre-processed to reduce the complex background noise and the contrast discrepancy resulted from film development. During the network testing phase, a defuzzification process was applied to decipher the trained network's output triggered by the nodule candidate in the testing set. Finally, a Receiver Operating Characteristic (ROC) analysis was used to evaluate the CNN's performance based on the defuzzified output of the testing database. Preliminary results showed an average Az (the performance index) of 0.84 which is equivalent to 0.80 true-positive detection (sensitivity) with an average 2-3 false-positive detections per chest image." @default.
- W115816039 created "2016-06-24" @default.
- W115816039 creator A5014450817 @default.
- W115816039 creator A5029054711 @default.
- W115816039 creator A5071503238 @default.
- W115816039 creator A5082730464 @default.
- W115816039 date "1993-01-01" @default.
- W115816039 modified "2023-09-23" @default.
- W115816039 title "Application of artificial neural networks for reduction of false-positive detections in digital chest radiographs." @default.
- W115816039 cites W1967923077 @default.
- W115816039 cites W1969786749 @default.
- W115816039 cites W1982526788 @default.
- W115816039 cites W2103076817 @default.
- W115816039 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2248546" @default.
- W115816039 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8130511" @default.
- W115816039 hasPublicationYear "1993" @default.
- W115816039 type Work @default.
- W115816039 sameAs 115816039 @default.
- W115816039 citedByCount "10" @default.
- W115816039 countsByYear W1158160392018 @default.
- W115816039 countsByYear W1158160392023 @default.
- W115816039 crossrefType "journal-article" @default.
- W115816039 hasAuthorship W115816039A5014450817 @default.
- W115816039 hasAuthorship W115816039A5029054711 @default.
- W115816039 hasAuthorship W115816039A5071503238 @default.
- W115816039 hasAuthorship W115816039A5082730464 @default.
- W115816039 hasConcept C115961682 @default.
- W115816039 hasConcept C119857082 @default.
- W115816039 hasConcept C124101348 @default.
- W115816039 hasConcept C153180895 @default.
- W115816039 hasConcept C154945302 @default.
- W115816039 hasConcept C160633673 @default.
- W115816039 hasConcept C41008148 @default.
- W115816039 hasConcept C42011625 @default.
- W115816039 hasConcept C50644808 @default.
- W115816039 hasConcept C5263885 @default.
- W115816039 hasConcept C58166 @default.
- W115816039 hasConcept C58471807 @default.
- W115816039 hasConcept C81363708 @default.
- W115816039 hasConcept C95922358 @default.
- W115816039 hasConcept C99498987 @default.
- W115816039 hasConceptScore W115816039C115961682 @default.
- W115816039 hasConceptScore W115816039C119857082 @default.
- W115816039 hasConceptScore W115816039C124101348 @default.
- W115816039 hasConceptScore W115816039C153180895 @default.
- W115816039 hasConceptScore W115816039C154945302 @default.
- W115816039 hasConceptScore W115816039C160633673 @default.
- W115816039 hasConceptScore W115816039C41008148 @default.
- W115816039 hasConceptScore W115816039C42011625 @default.
- W115816039 hasConceptScore W115816039C50644808 @default.
- W115816039 hasConceptScore W115816039C5263885 @default.
- W115816039 hasConceptScore W115816039C58166 @default.
- W115816039 hasConceptScore W115816039C58471807 @default.
- W115816039 hasConceptScore W115816039C81363708 @default.
- W115816039 hasConceptScore W115816039C95922358 @default.
- W115816039 hasConceptScore W115816039C99498987 @default.
- W115816039 hasLocation W1158160391 @default.
- W115816039 hasOpenAccess W115816039 @default.
- W115816039 hasPrimaryLocation W1158160391 @default.
- W115816039 hasRelatedWork W2726121760 @default.
- W115816039 hasRelatedWork W2944063455 @default.
- W115816039 hasRelatedWork W2969273655 @default.
- W115816039 hasRelatedWork W3095523211 @default.
- W115816039 hasRelatedWork W3141808356 @default.
- W115816039 hasRelatedWork W4212810088 @default.
- W115816039 hasRelatedWork W4281730158 @default.
- W115816039 hasRelatedWork W4288048173 @default.
- W115816039 hasRelatedWork W4288774436 @default.
- W115816039 hasRelatedWork W3205643818 @default.
- W115816039 isParatext "false" @default.
- W115816039 isRetracted "false" @default.
- W115816039 magId "115816039" @default.
- W115816039 workType "article" @default.