Matches in SemOpenAlex for { <https://semopenalex.org/work/W115962776> ?p ?o ?g. }
- W115962776 abstract "This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, and creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the convective pass into the hot recirculated fluidizing medium and adding an insulating layer to superheater tubes to raise their surface temperature above the dew point temperature of alkali chlorides. These design changes offer advantages but introduce other challenges. For example, operating with superheater temperatures above the dew point of alkali chlorides could require the use of creep-resistant tube alloys and doesn't eliminate chloride corrosion. Improved test methods that can be applied within this project include automated dimensional metrology to make a statistical analysis of depth of penetration and corrosion product thickness, and simultaneous thermal analysis measurements to quantify the melting of complex ashes and avoid the unreliability of the standard ash fusion test. Other important developments in testing include the installation of individually-temperature-controlled superheater loops for corrosion testing in operating boilers and temperature gradient testing." @default.
- W115962776 created "2016-06-24" @default.
- W115962776 creator A5077072643 @default.
- W115962776 date "2011-12-01" @default.
- W115962776 modified "2023-09-25" @default.
- W115962776 title "Superheater Corrosion In Biomass Boilers: Today's Science and Technology" @default.
- W115962776 cites W125338553 @default.
- W115962776 cites W142400052 @default.
- W115962776 cites W1499482718 @default.
- W115962776 cites W150103921 @default.
- W115962776 cites W1504899303 @default.
- W115962776 cites W1508203242 @default.
- W115962776 cites W155200706 @default.
- W115962776 cites W1571128374 @default.
- W115962776 cites W1589712349 @default.
- W115962776 cites W1650784010 @default.
- W115962776 cites W1963686894 @default.
- W115962776 cites W1965132787 @default.
- W115962776 cites W1965456264 @default.
- W115962776 cites W1973473043 @default.
- W115962776 cites W1974336038 @default.
- W115962776 cites W1976740708 @default.
- W115962776 cites W1984606741 @default.
- W115962776 cites W1986002851 @default.
- W115962776 cites W1987963224 @default.
- W115962776 cites W1989479932 @default.
- W115962776 cites W1995269336 @default.
- W115962776 cites W199537465 @default.
- W115962776 cites W1998050122 @default.
- W115962776 cites W199806675 @default.
- W115962776 cites W1999449366 @default.
- W115962776 cites W2008942774 @default.
- W115962776 cites W2009404226 @default.
- W115962776 cites W2010713656 @default.
- W115962776 cites W2013582109 @default.
- W115962776 cites W2014507159 @default.
- W115962776 cites W2014839302 @default.
- W115962776 cites W2014908473 @default.
- W115962776 cites W2018478899 @default.
- W115962776 cites W2019287057 @default.
- W115962776 cites W2020492768 @default.
- W115962776 cites W202449567 @default.
- W115962776 cites W2026557851 @default.
- W115962776 cites W2027342698 @default.
- W115962776 cites W2029828170 @default.
- W115962776 cites W2030034200 @default.
- W115962776 cites W2030202623 @default.
- W115962776 cites W2031462075 @default.
- W115962776 cites W2036181312 @default.
- W115962776 cites W2036418723 @default.
- W115962776 cites W2038436107 @default.
- W115962776 cites W2038532540 @default.
- W115962776 cites W2040807776 @default.
- W115962776 cites W2042098561 @default.
- W115962776 cites W2045312547 @default.
- W115962776 cites W2048567591 @default.
- W115962776 cites W2048666858 @default.
- W115962776 cites W2048737777 @default.
- W115962776 cites W2049585856 @default.
- W115962776 cites W2051891088 @default.
- W115962776 cites W2052237580 @default.
- W115962776 cites W2055659945 @default.
- W115962776 cites W2057125430 @default.
- W115962776 cites W2059031927 @default.
- W115962776 cites W2060224982 @default.
- W115962776 cites W2062687751 @default.
- W115962776 cites W2063153043 @default.
- W115962776 cites W2065304981 @default.
- W115962776 cites W2071367954 @default.
- W115962776 cites W2078224600 @default.
- W115962776 cites W2079907977 @default.
- W115962776 cites W2083144970 @default.
- W115962776 cites W2086878962 @default.
- W115962776 cites W2087826298 @default.
- W115962776 cites W2089753939 @default.
- W115962776 cites W2090547080 @default.
- W115962776 cites W2093925460 @default.
- W115962776 cites W2094314826 @default.
- W115962776 cites W2094825615 @default.
- W115962776 cites W2113658014 @default.
- W115962776 cites W2124216113 @default.
- W115962776 cites W2126506552 @default.
- W115962776 cites W2135979566 @default.
- W115962776 cites W2138965044 @default.
- W115962776 cites W2160121514 @default.
- W115962776 cites W2239559330 @default.
- W115962776 cites W2246590657 @default.
- W115962776 cites W2277854324 @default.
- W115962776 cites W2311025161 @default.
- W115962776 cites W2318768721 @default.
- W115962776 cites W2334532315 @default.
- W115962776 cites W2472774228 @default.
- W115962776 cites W2508230135 @default.
- W115962776 cites W2520335661 @default.
- W115962776 cites W2746702458 @default.
- W115962776 cites W2896402404 @default.
- W115962776 cites W2940703729 @default.
- W115962776 cites W2951955083 @default.
- W115962776 cites W2952537608 @default.
- W115962776 cites W2953854890 @default.