Matches in SemOpenAlex for { <https://semopenalex.org/work/W116019643> ?p ?o ?g. }
- W116019643 endingPage "2488" @default.
- W116019643 startingPage "2480" @default.
- W116019643 abstract "Radio signals from Global Navigation Satellite Systems (GNSS) are received and processed using appropriate receivers which further provide position, navigation and timing (PNT) services. There are many important GNSS applications including safe aircraft landing and navigation, ship navigation and offshore oil extraction industries which generally, require 24 hour time availability as well as good, accuracy and integrity. However, there are substantial challenges in meeting these requirements during strong ionospheric storms which also depend significantly on solar activity and solar cycle epoch with the occurrence of strong ionospheric storms being significantly more frequent during the peak (solar maximum) of the 11 year cycle than at the solar minimum. The solar maximum of the current cycle is expected around May 2013, but since relatively low SSN (Sun Spot Numbers) are predicted, the SCOSTEP (Scientific Committee and Solar Terrestrial Physics) has pronounced the current solar maximum as the year of “MiniMax24” [1] and hence GNSS receivers may experience comparatively fewer/weaker ionospheric storm conditions than would be expected for solar maximum conditions. The UK Royal Academy of Engineering recently published a report assessing the possibility of an extreme ionospheric threat to GNSS services in current solar cycle [2] based on the events from past cycles. During ionospheric storms, the electron density in the ionosphere is significantly affected, generating small and large scale gradients in the ionosphere, and also resulting in small scale structure, in particular ionospheric irregularities which cause rapid random fluctuation in phase and/or amplitude of the received signal. The level of fluctuation can be quantified by phase and amplitude scintillation indices which are the standard deviation of the phase and normalized standard deviation of the intensity respectively. Fast phase changes and/or deep amplitude fades can present a considerable problem to the carrier tracking loop of a GPS receiver’s PLL (Phase Lock Loop) which can result in phase deviations, cycle slips or sometime even a complete loss of lock of the PLL for one or more of the visible satellites leading to a significant positional error. The strength of scintillation generated due to ionospheric irregularities has been extensively studied using the time derivative of TEC (Total Electron Content) and this has been correlated with ionospheric scintillation [3]. In a recent study, Tiwari et al. derived an analogous phase scintillation index (in radians) using high pass filtered RoT at 1 Hz rate [4] which shows a good correlation with phase scintillation (measured using the conventional phase scintillation index) observed during strong geomagnetic storms in the high latitude region, in addition to correlation of the analytically derived standard deviation of phase jitter of the PLL (Conker et al. formula [5]). In this study, the phase jitter of the carrier tracking loop of a GPS receiver is investigated under different conditions including PLL loop order, bandwidth and carrier frequency which further, correlated with the estimated phase jitter using TEC data collected at 1 Hz. To validate this approach, experiments were conducted at our Newcastle University laboratory and receiving station employing a generated scintillated signal using output from the SPLN ionospheric scintillation simulator [6], a NovAtel 4004B GPS receiver for collecting TEC at a 1 Hz data rate and our own developed GPS software receiver coupled to both USRP (Universal Software Radio Peripheral) N210 and STEREO RF front end devices for processing raw GPS signals. The USRP used in this experiment is the second generation USRP front end receiver that can receive a broad range of frequencies (DC to 2GHz) which allow us to receive GNSS signals over a wide bandwidth. The motherboard of this USRP device has a FPGA which processes the complex waveform at a high sampling frequency and high precision ADCs and DACs for further processing. The device is read via a gigabit Ethernet interface using a Linux OS computer. The STEREO RF is a fully dual-board GNSS RF front end device for L band signals. These three receivers were connected to a common GPS antenna using an RF splitter followed by an RF amplifier. The TEC derived phase jitter was further compared with the phase jitter of the carrier tracking loop obtained from the software GPS receiver employing the Conker et al., formula [5]. The preliminary results show that the TEC derived phase jitter is an optimal candidate for modeling ionospheric scintillation effects on carrier tracking loop and could also be used for a regional alarm index to mitigate the scintillation effect. As an application, of such a regional alarm index, it could be in the determination of the phase jitter of carrier tracking loops based on the user’s receiver parameters. Then, in the position estimation, each satellite-receiver link could be weighted inversely according to the determined jitter to improve the position solution as shown by Strangeways et al. [7].References[1] Gopalswamy, N., MiniMax24 observation campaign, 50th UNCOPUOS/STSC meeting, February 13, 2013. [2] Royal Academy of Engineering, Extreme space weather: impacts on engineered systems and infrastructure, Anual Report, January, 2013. [3] Jakowski, N., Borries, C., & Wilken, V. Introducing a disturbance ionosphere index. Radio Sci., 47 , RS0L14, doi:10.1029/2011RS004939, 2012. [4] Tiwari, R., H. J. Strangeways, S. Tiwari and A. Ahemad, Investigation of ionospheric irregularities and scintillation using TEC at high latitude, Advances in Space Research (submitted January 2013).[5] Conker, R. S., M. B. El-Arini, C. J. Hegarty, and T. Hsiao, Modelling the effects of ionospheric scintillation on GPS/satellite-based augmentation system availability. Radio Sci., 38, 1, 1001, doi: 10.1029/2000RS002604, 2003.[6] Tiwari, R., H. J. Strangeways, S. Tiwari, V. E. Gherm, N. Zernov and S. Skone, Validation of a transionospheric propagation scintillation simulator for strongly scintillated GPS signals using extensive high latitude data sets, 24th ION GNSS, Portland, OR, September 2011, pp. 2561-2571. [7] Strangeways, H. J., Y. Ho, M. H. O. Aquino, Z. G. Elmas, H. A. Marques, J. F. G. Monico and H. A Silva, On determining spectral parameters tracking jitter and GPS position improvement by scintillation mitigation, Radio Science, vol. 46, doi:10.1029/2010RS004575, 2011." @default.
- W116019643 created "2016-06-24" @default.
- W116019643 creator A5021974203 @default.
- W116019643 creator A5060798262 @default.
- W116019643 creator A5065914308 @default.
- W116019643 date "2013-09-20" @default.
- W116019643 modified "2023-09-24" @default.
- W116019643 title "Modeling the Effects of Ionospheric Scintillation on GPS Carrier Phase Tracking Using High Rate TEC Data" @default.
- W116019643 cites W1564814880 @default.
- W116019643 cites W1738267723 @default.
- W116019643 cites W1912797436 @default.
- W116019643 cites W1938407039 @default.
- W116019643 cites W1970628490 @default.
- W116019643 cites W1997574807 @default.
- W116019643 cites W2024714333 @default.
- W116019643 cites W2040267228 @default.
- W116019643 cites W2056688327 @default.
- W116019643 cites W2091995808 @default.
- W116019643 cites W2095648485 @default.
- W116019643 cites W2132639726 @default.
- W116019643 cites W2147688500 @default.
- W116019643 cites W777411020 @default.
- W116019643 hasPublicationYear "2013" @default.
- W116019643 type Work @default.
- W116019643 sameAs 116019643 @default.
- W116019643 citedByCount "1" @default.
- W116019643 countsByYear W1160196432019 @default.
- W116019643 crossrefType "journal-article" @default.
- W116019643 hasAuthorship W116019643A5021974203 @default.
- W116019643 hasAuthorship W116019643A5060798262 @default.
- W116019643 hasAuthorship W116019643A5065914308 @default.
- W116019643 hasConcept C108411613 @default.
- W116019643 hasConcept C10880902 @default.
- W116019643 hasConcept C115260700 @default.
- W116019643 hasConcept C116403925 @default.
- W116019643 hasConcept C121332964 @default.
- W116019643 hasConcept C127313418 @default.
- W116019643 hasConcept C14279187 @default.
- W116019643 hasConcept C144992956 @default.
- W116019643 hasConcept C153294291 @default.
- W116019643 hasConcept C176379880 @default.
- W116019643 hasConcept C205649164 @default.
- W116019643 hasConcept C39432304 @default.
- W116019643 hasConcept C41008148 @default.
- W116019643 hasConcept C43867161 @default.
- W116019643 hasConcept C52083857 @default.
- W116019643 hasConcept C60229501 @default.
- W116019643 hasConcept C62520636 @default.
- W116019643 hasConcept C62649853 @default.
- W116019643 hasConcept C72886185 @default.
- W116019643 hasConcept C76155785 @default.
- W116019643 hasConcept C8058405 @default.
- W116019643 hasConceptScore W116019643C108411613 @default.
- W116019643 hasConceptScore W116019643C10880902 @default.
- W116019643 hasConceptScore W116019643C115260700 @default.
- W116019643 hasConceptScore W116019643C116403925 @default.
- W116019643 hasConceptScore W116019643C121332964 @default.
- W116019643 hasConceptScore W116019643C127313418 @default.
- W116019643 hasConceptScore W116019643C14279187 @default.
- W116019643 hasConceptScore W116019643C144992956 @default.
- W116019643 hasConceptScore W116019643C153294291 @default.
- W116019643 hasConceptScore W116019643C176379880 @default.
- W116019643 hasConceptScore W116019643C205649164 @default.
- W116019643 hasConceptScore W116019643C39432304 @default.
- W116019643 hasConceptScore W116019643C41008148 @default.
- W116019643 hasConceptScore W116019643C43867161 @default.
- W116019643 hasConceptScore W116019643C52083857 @default.
- W116019643 hasConceptScore W116019643C60229501 @default.
- W116019643 hasConceptScore W116019643C62520636 @default.
- W116019643 hasConceptScore W116019643C62649853 @default.
- W116019643 hasConceptScore W116019643C72886185 @default.
- W116019643 hasConceptScore W116019643C76155785 @default.
- W116019643 hasConceptScore W116019643C8058405 @default.
- W116019643 hasLocation W1160196431 @default.
- W116019643 hasOpenAccess W116019643 @default.
- W116019643 hasPrimaryLocation W1160196431 @default.
- W116019643 hasRelatedWork W1532004202 @default.
- W116019643 hasRelatedWork W1583728567 @default.
- W116019643 hasRelatedWork W1738267723 @default.
- W116019643 hasRelatedWork W1838303999 @default.
- W116019643 hasRelatedWork W1992824335 @default.
- W116019643 hasRelatedWork W2013887431 @default.
- W116019643 hasRelatedWork W2021879925 @default.
- W116019643 hasRelatedWork W2031693634 @default.
- W116019643 hasRelatedWork W2071207555 @default.
- W116019643 hasRelatedWork W2109269938 @default.
- W116019643 hasRelatedWork W2151167476 @default.
- W116019643 hasRelatedWork W2161640524 @default.
- W116019643 hasRelatedWork W2207749787 @default.
- W116019643 hasRelatedWork W2563373722 @default.
- W116019643 hasRelatedWork W2564648010 @default.
- W116019643 hasRelatedWork W2599288249 @default.
- W116019643 hasRelatedWork W2614271855 @default.
- W116019643 hasRelatedWork W2950081305 @default.
- W116019643 hasRelatedWork W3115948144 @default.
- W116019643 hasRelatedWork W786924241 @default.
- W116019643 isParatext "false" @default.
- W116019643 isRetracted "false" @default.