Matches in SemOpenAlex for { <https://semopenalex.org/work/W116289743> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W116289743 abstract "This dissertation develops and studies fast algorithms for solving closest point problems. Algorithms for such problems have applications in many areas including statistical classification, crystallography, data compression, and finite element analysis. In addition to a comprehensive empirical study of known sequential methods, I introduce new parallel algorithms for these problems that are both efficient and practical. I present a simple and flexible programming model for designing and analyzing parallel algorithms. Also, I describe fast parallel algorithms for nearest-neighbor searching and constructing Voronoi diagrams. Finally, I demonstrate that my algorithms actually obtain good performance on a wide variety of machine architectures.The key algorithmic ideas that I examine are exploiting spatial locality, and random sampling. Spatial decomposition provides allows many concurrent threads to work independently of one another in local areas of a shared data structure. Random sampling provides a simple way to adaptively decompose irregular problems, and to balance workload among many threads. Used together, these techniques result in effective algorithms for a wide range of geometric problems.The key experimental ideas used in my thesis are simulation and animation. I use algorithm animation to validate algorithms and gain intuition about their behavior. I model the expected performance of algorithms using simulation experiments, and some knowledge as to how much critical primitive operations will cost on a given machine. In addition, I do this without the burden of esoteric computational models that attempt to cover every possible variable in the design of a computer system. An iterative process of design, validation, and simulation delays the actual implementation until as many details as possible are accounted for. Then, further experiments are used to tune implementations for better performance.Part of this work was at the Department of Computer Science, Duke University, Durham, NC 27708-0129 and was supported by ARPA/ISTO Grant N00014-91-J-1985, Subcontract KI-92-01-0182 of ARPA/ISTO prime Contract N00014-92-C-0182. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied of the Advanced Research Projects Agency, NSF, ONR or the U.S. government." @default.
- W116289743 created "2016-06-24" @default.
- W116289743 creator A5056885138 @default.
- W116289743 date "1994-12-15" @default.
- W116289743 modified "2023-09-24" @default.
- W116289743 title "Efficient parallel algorithms for closet point problems" @default.
- W116289743 hasPublicationYear "1994" @default.
- W116289743 type Work @default.
- W116289743 sameAs 116289743 @default.
- W116289743 citedByCount "3" @default.
- W116289743 crossrefType "journal-article" @default.
- W116289743 hasAuthorship W116289743A5056885138 @default.
- W116289743 hasConcept C11413529 @default.
- W116289743 hasConcept C120373497 @default.
- W116289743 hasConcept C41008148 @default.
- W116289743 hasConcept C80444323 @default.
- W116289743 hasConceptScore W116289743C11413529 @default.
- W116289743 hasConceptScore W116289743C120373497 @default.
- W116289743 hasConceptScore W116289743C41008148 @default.
- W116289743 hasConceptScore W116289743C80444323 @default.
- W116289743 hasLocation W1162897431 @default.
- W116289743 hasOpenAccess W116289743 @default.
- W116289743 hasPrimaryLocation W1162897431 @default.
- W116289743 hasRelatedWork W122855315 @default.
- W116289743 hasRelatedWork W1498251975 @default.
- W116289743 hasRelatedWork W1968307589 @default.
- W116289743 hasRelatedWork W1995847347 @default.
- W116289743 hasRelatedWork W2062590409 @default.
- W116289743 hasRelatedWork W207818447 @default.
- W116289743 hasRelatedWork W2271660855 @default.
- W116289743 hasRelatedWork W2403059793 @default.
- W116289743 hasRelatedWork W2487870478 @default.
- W116289743 hasRelatedWork W2493267180 @default.
- W116289743 hasRelatedWork W2594063632 @default.
- W116289743 hasRelatedWork W26399059 @default.
- W116289743 hasRelatedWork W2769788175 @default.
- W116289743 hasRelatedWork W2906750130 @default.
- W116289743 hasRelatedWork W2921567990 @default.
- W116289743 hasRelatedWork W2946617264 @default.
- W116289743 hasRelatedWork W3035032999 @default.
- W116289743 hasRelatedWork W3126635575 @default.
- W116289743 hasRelatedWork W3184019483 @default.
- W116289743 hasRelatedWork W71000211 @default.
- W116289743 isParatext "false" @default.
- W116289743 isRetracted "false" @default.
- W116289743 magId "116289743" @default.
- W116289743 workType "article" @default.