Matches in SemOpenAlex for { <https://semopenalex.org/work/W116561908> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W116561908 abstract "The present thesis investigates the copyright protection by utilizing the digital watermarking of images. The basic spatial domain technique DCT based frequency based technique were studied and simulated. Most recently used Neural Network based DCT Scheme is also studied and simulated. The earlier used Back Propagation Network (BPN) is replaced by Radial Basis Function Neural Network (RBFNN) in the proposed scheme to improve the robustness and overall computation requirements. Since RBFNN requires less number of weights during training, the memory requirement is also less as compared to BPN. Keywords : Digital Watermarking, Back Propagation Network (BPN), Hash Function, Radial Basis Function Neural Network (RBFNN), and Discrete Cosine Transform (DCT). Watermarking can be considered as a special technique of steganography where one message is embedded in another and the two messages are related to each other in some way. The most common examples of watermarking are the presence of specific patterns in currency notes, which are visible only when the note is held to light, and logos in the background of printed text documents. The watermarking techniques prevent forgery and unauthorized replication of physical objects. In digital watermarking a low-energy signal is imperceptibly embedded in another signal. The low-energy signal is called the watermark and it depicts some metadata, like security or rights information about the main signal. The main signal in which the watermark is embedded is referred to as the cover signal since it covers the watermark. In recent years the ease with which perfect copies can be made has lead large-scale unauthorized copying, which is a great concern to the music, film, book and software publishing industries. Because of this concern over copyright issues, a number of technologies are being developed to protect against illegal copying. One of these technologies is the use of digital watermarks. Watermarking embeds an ownership signal directly into the data. In this way, the signal is always present with the data.Analysis Digital watermarking techniques were implemented in the frequency domain using Discrete Cosine Transform (DCT). The DCT transforms a signal or image from the spatial domain to the frequency domain. Also digital watermarking was implemented using Neural Networks such as: 1. Back Propagation Network (BPN) 2. Radial Basis Function Neural Network (RBFNN) Digital watermarking using RBFNN was proposed which improves both security and robustness of the image. It is based on the Cover’s theorem which states that nonlinearly separable patterns can be separated linearly if the pattern is cast nonlinearly into a higher dimensional space. RBFNN contains an input layer, a hidden layer with nonlinear activation functions and an output layer with linear activation functions. Results The following results were obtained:- 1. The DCT based method is more robust than that of the LSB based method in the tested possible attacks. DCT method can achieve the following two goals: The first is that illegal users do not know the location of the embedded watermark in the image. The second is that a legal user can retrieve the embedded watermark from the altered image. 2. The RBFNN network is easier to train than the BPN network. The main advantage of the RBFNN over the BPN is the reduced computational cost in the training stage, while maintaining a good performance of approximation. Also less number of weights are required to be stored or less memory requirements for the verification and testing in a later stage." @default.
- W116561908 created "2016-06-24" @default.
- W116561908 creator A5023643353 @default.
- W116561908 creator A5032453591 @default.
- W116561908 creator A5034629524 @default.
- W116561908 date "2007-01-01" @default.
- W116561908 modified "2023-10-16" @default.
- W116561908 title "Improved digital watermarking schemes using DCT and neural techniques" @default.
- W116561908 cites W1600959336 @default.
- W116561908 cites W2010997509 @default.
- W116561908 cites W2081350999 @default.
- W116561908 cites W2085371053 @default.
- W116561908 cites W2100115174 @default.
- W116561908 cites W2116467012 @default.
- W116561908 cites W2118322704 @default.
- W116561908 cites W2154452829 @default.
- W116561908 cites W2158518777 @default.
- W116561908 cites W2162371785 @default.
- W116561908 cites W2164736805 @default.
- W116561908 cites W2170436791 @default.
- W116561908 cites W2340558563 @default.
- W116561908 cites W2547205475 @default.
- W116561908 hasPublicationYear "2007" @default.
- W116561908 type Work @default.
- W116561908 sameAs 116561908 @default.
- W116561908 citedByCount "0" @default.
- W116561908 crossrefType "dissertation" @default.
- W116561908 hasAuthorship W116561908A5023643353 @default.
- W116561908 hasAuthorship W116561908A5032453591 @default.
- W116561908 hasAuthorship W116561908A5034629524 @default.
- W116561908 hasConcept C104317684 @default.
- W116561908 hasConcept C115961682 @default.
- W116561908 hasConcept C150817343 @default.
- W116561908 hasConcept C153180895 @default.
- W116561908 hasConcept C154945302 @default.
- W116561908 hasConcept C164112704 @default.
- W116561908 hasConcept C185592680 @default.
- W116561908 hasConcept C2221639 @default.
- W116561908 hasConcept C31972630 @default.
- W116561908 hasConcept C38652104 @default.
- W116561908 hasConcept C41008148 @default.
- W116561908 hasConcept C41608201 @default.
- W116561908 hasConcept C50644808 @default.
- W116561908 hasConcept C55493867 @default.
- W116561908 hasConcept C63479239 @default.
- W116561908 hasConcept C99138194 @default.
- W116561908 hasConceptScore W116561908C104317684 @default.
- W116561908 hasConceptScore W116561908C115961682 @default.
- W116561908 hasConceptScore W116561908C150817343 @default.
- W116561908 hasConceptScore W116561908C153180895 @default.
- W116561908 hasConceptScore W116561908C154945302 @default.
- W116561908 hasConceptScore W116561908C164112704 @default.
- W116561908 hasConceptScore W116561908C185592680 @default.
- W116561908 hasConceptScore W116561908C2221639 @default.
- W116561908 hasConceptScore W116561908C31972630 @default.
- W116561908 hasConceptScore W116561908C38652104 @default.
- W116561908 hasConceptScore W116561908C41008148 @default.
- W116561908 hasConceptScore W116561908C41608201 @default.
- W116561908 hasConceptScore W116561908C50644808 @default.
- W116561908 hasConceptScore W116561908C55493867 @default.
- W116561908 hasConceptScore W116561908C63479239 @default.
- W116561908 hasConceptScore W116561908C99138194 @default.
- W116561908 hasLocation W1165619081 @default.
- W116561908 hasOpenAccess W116561908 @default.
- W116561908 hasPrimaryLocation W1165619081 @default.
- W116561908 hasRelatedWork W115589375 @default.
- W116561908 hasRelatedWork W158046507 @default.
- W116561908 hasRelatedWork W160486730 @default.
- W116561908 hasRelatedWork W1984684066 @default.
- W116561908 hasRelatedWork W1987357214 @default.
- W116561908 hasRelatedWork W2014493911 @default.
- W116561908 hasRelatedWork W2026566150 @default.
- W116561908 hasRelatedWork W2084911761 @default.
- W116561908 hasRelatedWork W2113626188 @default.
- W116561908 hasRelatedWork W2149954076 @default.
- W116561908 hasRelatedWork W2386187861 @default.
- W116561908 hasRelatedWork W2541400088 @default.
- W116561908 hasRelatedWork W2551894759 @default.
- W116561908 hasRelatedWork W2554627750 @default.
- W116561908 hasRelatedWork W2559227431 @default.
- W116561908 hasRelatedWork W2736682994 @default.
- W116561908 hasRelatedWork W2796180428 @default.
- W116561908 hasRelatedWork W2798847778 @default.
- W116561908 hasRelatedWork W2741607598 @default.
- W116561908 hasRelatedWork W2765476662 @default.
- W116561908 isParatext "false" @default.
- W116561908 isRetracted "false" @default.
- W116561908 magId "116561908" @default.
- W116561908 workType "dissertation" @default.