Matches in SemOpenAlex for { <https://semopenalex.org/work/W1170605792> ?p ?o ?g. }
- W1170605792 endingPage "17" @default.
- W1170605792 startingPage "4" @default.
- W1170605792 abstract "Making accurate predictions is a difficult task that is encountered throughout many research domains. In certain cases, the number of available samples is so scarce that providing reliable estimates is a challenging problem. In this paper, we are interested in giving as accurate predictions as possible based on the Extreme Learning Machine type of a neural network in small sample data scenarios. Most of the Extreme Learning Machine literature is focused on choosing a particular model from a pool of candidates, but such approach usually ignores model selection uncertainty and has inferior performance compared to combining methods. We empirically examine several model selection criteria coupled with new model combining approaches that were recently proposed. The results obtained indicate that a careful choice among the combinations must be performed in order to have the most accurate and stable predictions." @default.
- W1170605792 created "2016-06-24" @default.
- W1170605792 creator A5050678141 @default.
- W1170605792 creator A5078854826 @default.
- W1170605792 creator A5083632408 @default.
- W1170605792 date "2016-01-01" @default.
- W1170605792 modified "2023-09-24" @default.
- W1170605792 title "Comparison of combining methods using Extreme Learning Machines under small sample scenario" @default.
- W1170605792 cites W1598813349 @default.
- W1170605792 cites W1603903339 @default.
- W1170605792 cites W1964357740 @default.
- W1170605792 cites W1968371014 @default.
- W1170605792 cites W1974589689 @default.
- W1170605792 cites W1982508447 @default.
- W1170605792 cites W1982651196 @default.
- W1170605792 cites W1985266527 @default.
- W1170605792 cites W1986783130 @default.
- W1170605792 cites W1990749325 @default.
- W1170605792 cites W2002694644 @default.
- W1170605792 cites W2002728347 @default.
- W1170605792 cites W2013805643 @default.
- W1170605792 cites W2019718627 @default.
- W1170605792 cites W2021136548 @default.
- W1170605792 cites W2021419892 @default.
- W1170605792 cites W2026131661 @default.
- W1170605792 cites W2050297026 @default.
- W1170605792 cites W2052025831 @default.
- W1170605792 cites W2054658115 @default.
- W1170605792 cites W2056470375 @default.
- W1170605792 cites W2057765075 @default.
- W1170605792 cites W2062195890 @default.
- W1170605792 cites W2076337305 @default.
- W1170605792 cites W2078273711 @default.
- W1170605792 cites W2080712057 @default.
- W1170605792 cites W2081295504 @default.
- W1170605792 cites W2111072639 @default.
- W1170605792 cites W2115643478 @default.
- W1170605792 cites W2117240603 @default.
- W1170605792 cites W2122040390 @default.
- W1170605792 cites W2122196572 @default.
- W1170605792 cites W2125251038 @default.
- W1170605792 cites W2130378394 @default.
- W1170605792 cites W2141695047 @default.
- W1170605792 cites W2157106797 @default.
- W1170605792 cites W2158286838 @default.
- W1170605792 cites W2168175751 @default.
- W1170605792 cites W2235806098 @default.
- W1170605792 cites W4240294902 @default.
- W1170605792 cites W4243797702 @default.
- W1170605792 cites W65708977 @default.
- W1170605792 doi "https://doi.org/10.1016/j.neucom.2015.03.109" @default.
- W1170605792 hasPublicationYear "2016" @default.
- W1170605792 type Work @default.
- W1170605792 sameAs 1170605792 @default.
- W1170605792 citedByCount "7" @default.
- W1170605792 countsByYear W11706057922018 @default.
- W1170605792 countsByYear W11706057922019 @default.
- W1170605792 countsByYear W11706057922020 @default.
- W1170605792 countsByYear W11706057922021 @default.
- W1170605792 countsByYear W11706057922022 @default.
- W1170605792 countsByYear W11706057922023 @default.
- W1170605792 crossrefType "journal-article" @default.
- W1170605792 hasAuthorship W1170605792A5050678141 @default.
- W1170605792 hasAuthorship W1170605792A5078854826 @default.
- W1170605792 hasAuthorship W1170605792A5083632408 @default.
- W1170605792 hasConcept C119857082 @default.
- W1170605792 hasConcept C124101348 @default.
- W1170605792 hasConcept C154945302 @default.
- W1170605792 hasConcept C162324750 @default.
- W1170605792 hasConcept C185592680 @default.
- W1170605792 hasConcept C187736073 @default.
- W1170605792 hasConcept C198531522 @default.
- W1170605792 hasConcept C2780150128 @default.
- W1170605792 hasConcept C2780451532 @default.
- W1170605792 hasConcept C41008148 @default.
- W1170605792 hasConcept C43617362 @default.
- W1170605792 hasConcept C50644808 @default.
- W1170605792 hasConcept C81917197 @default.
- W1170605792 hasConcept C93959086 @default.
- W1170605792 hasConceptScore W1170605792C119857082 @default.
- W1170605792 hasConceptScore W1170605792C124101348 @default.
- W1170605792 hasConceptScore W1170605792C154945302 @default.
- W1170605792 hasConceptScore W1170605792C162324750 @default.
- W1170605792 hasConceptScore W1170605792C185592680 @default.
- W1170605792 hasConceptScore W1170605792C187736073 @default.
- W1170605792 hasConceptScore W1170605792C198531522 @default.
- W1170605792 hasConceptScore W1170605792C2780150128 @default.
- W1170605792 hasConceptScore W1170605792C2780451532 @default.
- W1170605792 hasConceptScore W1170605792C41008148 @default.
- W1170605792 hasConceptScore W1170605792C43617362 @default.
- W1170605792 hasConceptScore W1170605792C50644808 @default.
- W1170605792 hasConceptScore W1170605792C81917197 @default.
- W1170605792 hasConceptScore W1170605792C93959086 @default.
- W1170605792 hasLocation W11706057921 @default.
- W1170605792 hasOpenAccess W1170605792 @default.
- W1170605792 hasPrimaryLocation W11706057921 @default.
- W1170605792 hasRelatedWork W1525510058 @default.
- W1170605792 hasRelatedWork W1545807863 @default.