Matches in SemOpenAlex for { <https://semopenalex.org/work/W117090335> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W117090335 abstract "Given a function f : {0, 1} → {0, 1}, let M (f) denote the smallest distance between f and a monotone function on {0, 1}. Let δM (f) denote the fraction of hypercube edges where f violates monotonicity. We give an alternative proof of the tight bound: δM (f) ≥ 2 n M (f) for any boolean function f . This was already shown by Raskhodnikova in [Ras99]. Let U be a set of objects and let P ⊆ U be a property of the elements of U . For many natural definitions of U and P , an object in U that is “globally” far from being in P also exhibits many “local” discrepancies. Thus, to test whether an object is globally far from being in P , one often only needs to make a few local checks for discrepancies. In this note, we characterize the relationship between global and local farness with respect to the property of monotonicity of boolean functions. First, we fix some notation. For two elements x, y ∈ {0, 1}, x is said to be less than y, or x ≺ y, if x 6= y and for all i ∈ [n], xi ≤ yi. We view the set {0, 1} n as vertices of the n-dimensional hypercube graph. An edge (x, y) in this graph denotes a pair of strings x and y such that x ≺ y and the Hamming distance between x and y is exactly 1. Note that the number of edges in {0, 1} is exactly 1 2n2 . For a function f : {0, 1} → {0, 1}, we say that an edge (x, y) is violated by f if x ≺ y but f(x) > f(y). The function f is monotone if and only if no edge in the hypercube is violated by f . Now, let us define the following two quantities: Definition 1. For a function f : {0, 1} → {0, 1}, • M (f) def = min g Pr x∈{0,1} [f(x) 6= g(x)], where g : {0, 1} → {0, 1} ranges over all monotone functions • δM (f) def = Pr e edge in {0,1} [e violated by f ] M (f) represents the global distance of f from the monotonicity property. δM (f) is a local distance measure corresponding to the following natural test of monotonicity (analyzed, e.g., in [DGL+99, GGL+00]): choose some random edges in the hypercube and check whether they are violated by f . The combinatorial question that now arises is the characterization of the relationship between the two distance measures. Goldreich et al. in [GGL+00] observed that this relationship is not simply determined; that is, M (·) is not just a function of δM (·) or vice versa. In fact, they proved the following: Theorem 2 (Proposition 4 of [GGL+00]). For every c < 1, for any sufficiently large n, and for any α such that 2−c·n ≤ α ≤ 1 2 : 1. There exists a function f : {0, 1} → {0, 1} such that α ≤ M (f) ≤ 2α and δM (f) = 2 n M (f) 2. There exists a function f : {0, 1} → {0, 1} such that (1− o(1))α ≤ M (f) ≤ 2α and δM (f) = (1± o(1)) · (1− c) · M (f) ∗Massachusetts Institute of Technology. Email:abhatt@mit.edu." @default.
- W117090335 created "2016-06-24" @default.
- W117090335 creator A5034026104 @default.
- W117090335 date "2008-01-01" @default.
- W117090335 modified "2023-09-23" @default.
- W117090335 title "A Note on the Distance to Monotonicity of Boolean Functions." @default.
- W117090335 cites W1586809440 @default.
- W117090335 hasPublicationYear "2008" @default.
- W117090335 type Work @default.
- W117090335 sameAs 117090335 @default.
- W117090335 citedByCount "5" @default.
- W117090335 countsByYear W1170903352012 @default.
- W117090335 countsByYear W1170903352017 @default.
- W117090335 countsByYear W1170903352018 @default.
- W117090335 crossrefType "journal-article" @default.
- W117090335 hasAuthorship W117090335A5034026104 @default.
- W117090335 hasConcept C114614502 @default.
- W117090335 hasConcept C118615104 @default.
- W117090335 hasConcept C123842658 @default.
- W117090335 hasConcept C134306372 @default.
- W117090335 hasConcept C14036430 @default.
- W117090335 hasConcept C187455244 @default.
- W117090335 hasConcept C193319292 @default.
- W117090335 hasConcept C2524010 @default.
- W117090335 hasConcept C2834757 @default.
- W117090335 hasConcept C33923547 @default.
- W117090335 hasConcept C50820777 @default.
- W117090335 hasConcept C72169020 @default.
- W117090335 hasConcept C78458016 @default.
- W117090335 hasConcept C86803240 @default.
- W117090335 hasConceptScore W117090335C114614502 @default.
- W117090335 hasConceptScore W117090335C118615104 @default.
- W117090335 hasConceptScore W117090335C123842658 @default.
- W117090335 hasConceptScore W117090335C134306372 @default.
- W117090335 hasConceptScore W117090335C14036430 @default.
- W117090335 hasConceptScore W117090335C187455244 @default.
- W117090335 hasConceptScore W117090335C193319292 @default.
- W117090335 hasConceptScore W117090335C2524010 @default.
- W117090335 hasConceptScore W117090335C2834757 @default.
- W117090335 hasConceptScore W117090335C33923547 @default.
- W117090335 hasConceptScore W117090335C50820777 @default.
- W117090335 hasConceptScore W117090335C72169020 @default.
- W117090335 hasConceptScore W117090335C78458016 @default.
- W117090335 hasConceptScore W117090335C86803240 @default.
- W117090335 hasLocation W1170903351 @default.
- W117090335 hasOpenAccess W117090335 @default.
- W117090335 hasPrimaryLocation W1170903351 @default.
- W117090335 hasRelatedWork W1036110228 @default.
- W117090335 hasRelatedWork W1586809440 @default.
- W117090335 hasRelatedWork W1973988314 @default.
- W117090335 hasRelatedWork W1984579615 @default.
- W117090335 hasRelatedWork W1986542077 @default.
- W117090335 hasRelatedWork W1994581034 @default.
- W117090335 hasRelatedWork W2016443407 @default.
- W117090335 hasRelatedWork W2038521541 @default.
- W117090335 hasRelatedWork W2044334279 @default.
- W117090335 hasRelatedWork W2061468234 @default.
- W117090335 hasRelatedWork W2079996283 @default.
- W117090335 hasRelatedWork W2086164960 @default.
- W117090335 hasRelatedWork W2100732817 @default.
- W117090335 hasRelatedWork W2119511843 @default.
- W117090335 hasRelatedWork W2141500688 @default.
- W117090335 hasRelatedWork W2359760591 @default.
- W117090335 hasRelatedWork W2884587121 @default.
- W117090335 hasRelatedWork W3023511428 @default.
- W117090335 hasRelatedWork W3107651557 @default.
- W117090335 hasRelatedWork W3113528066 @default.
- W117090335 hasVolume "15" @default.
- W117090335 isParatext "false" @default.
- W117090335 isRetracted "false" @default.
- W117090335 magId "117090335" @default.
- W117090335 workType "article" @default.