Matches in SemOpenAlex for { <https://semopenalex.org/work/W117451968> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W117451968 abstract "The theory of Kac-Moody Lie algebras was originally developed by Kac [5] and Moody [19]. These are Lie algebras L = L(A) associated with generalized Cartan matrices (GCM) A — i.e. A = (aij) is an n × n integral matrix satisfying: (1) aii = 2, for ail i, (2) aij ⩽ 0, for all i ≠ j, and (3) aij = 0 ⇔ aji = 0 for all i ≠ j. The algebra L(A) is not necessarily finite-dimensional. Two GCM’s A = (aij) and B = (bij) are called equivalent if there is a permutation π of the indices such that bij = aπi, πj for all i,j. A GCM is indecomposable if it is not equivalent to a matrix in block form ( left( {begin{array}{*{20}{c}} * & 0 0 & * end{array} } right) ). The GCM A is symmetrizable if there exists a nonsingular diagonal matrix D such that DA is symmetric. The GCM A is said to be of finite type if it is the Cartan matrix of a finite-dimensional split semisimple Lie algebra. The GCM A is Euclidean if it is indecomposable, symmetrizable, singular and every principal submatrix is of finite type. The infinite-dimensional Kac-Moody Lie algebras associated with the Euclidean generalized Cartan matrices are called affine Lie algebras. These algebras are completely classified [5,20]." @default.
- W117451968 created "2016-06-24" @default.
- W117451968 creator A5085902689 @default.
- W117451968 date "1985-01-01" @default.
- W117451968 modified "2023-09-23" @default.
- W117451968 title "Standard Representations of Some Affine Lie Algebras" @default.
- W117451968 cites W1973544939 @default.
- W117451968 cites W1977993088 @default.
- W117451968 cites W1988450209 @default.
- W117451968 cites W2000226383 @default.
- W117451968 cites W2004145847 @default.
- W117451968 cites W2008891504 @default.
- W117451968 cites W2011715650 @default.
- W117451968 cites W2026547790 @default.
- W117451968 cites W2028797882 @default.
- W117451968 cites W2030200172 @default.
- W117451968 cites W2032176295 @default.
- W117451968 cites W2033353175 @default.
- W117451968 cites W2037088284 @default.
- W117451968 cites W2042974949 @default.
- W117451968 cites W2061940093 @default.
- W117451968 cites W2081670817 @default.
- W117451968 cites W2135410064 @default.
- W117451968 cites W2322686978 @default.
- W117451968 doi "https://doi.org/10.1007/978-1-4613-9550-8_8" @default.
- W117451968 hasPublicationYear "1985" @default.
- W117451968 type Work @default.
- W117451968 sameAs 117451968 @default.
- W117451968 citedByCount "1" @default.
- W117451968 crossrefType "book-chapter" @default.
- W117451968 hasAuthorship W117451968A5085902689 @default.
- W117451968 hasConcept C114614502 @default.
- W117451968 hasConcept C136119220 @default.
- W117451968 hasConcept C145807718 @default.
- W117451968 hasConcept C157480366 @default.
- W117451968 hasConcept C18903297 @default.
- W117451968 hasConcept C202444582 @default.
- W117451968 hasConcept C203946495 @default.
- W117451968 hasConcept C2777299769 @default.
- W117451968 hasConcept C29945619 @default.
- W117451968 hasConcept C33923547 @default.
- W117451968 hasConcept C51568863 @default.
- W117451968 hasConcept C5475112 @default.
- W117451968 hasConcept C65096084 @default.
- W117451968 hasConcept C73648015 @default.
- W117451968 hasConcept C81999800 @default.
- W117451968 hasConcept C86803240 @default.
- W117451968 hasConcept C92757383 @default.
- W117451968 hasConcept C96442724 @default.
- W117451968 hasConcept C99634282 @default.
- W117451968 hasConceptScore W117451968C114614502 @default.
- W117451968 hasConceptScore W117451968C136119220 @default.
- W117451968 hasConceptScore W117451968C145807718 @default.
- W117451968 hasConceptScore W117451968C157480366 @default.
- W117451968 hasConceptScore W117451968C18903297 @default.
- W117451968 hasConceptScore W117451968C202444582 @default.
- W117451968 hasConceptScore W117451968C203946495 @default.
- W117451968 hasConceptScore W117451968C2777299769 @default.
- W117451968 hasConceptScore W117451968C29945619 @default.
- W117451968 hasConceptScore W117451968C33923547 @default.
- W117451968 hasConceptScore W117451968C51568863 @default.
- W117451968 hasConceptScore W117451968C5475112 @default.
- W117451968 hasConceptScore W117451968C65096084 @default.
- W117451968 hasConceptScore W117451968C73648015 @default.
- W117451968 hasConceptScore W117451968C81999800 @default.
- W117451968 hasConceptScore W117451968C86803240 @default.
- W117451968 hasConceptScore W117451968C92757383 @default.
- W117451968 hasConceptScore W117451968C96442724 @default.
- W117451968 hasConceptScore W117451968C99634282 @default.
- W117451968 hasLocation W1174519681 @default.
- W117451968 hasOpenAccess W117451968 @default.
- W117451968 hasPrimaryLocation W1174519681 @default.
- W117451968 hasRelatedWork W1517594058 @default.
- W117451968 hasRelatedWork W1608499731 @default.
- W117451968 hasRelatedWork W1968352561 @default.
- W117451968 hasRelatedWork W1980100565 @default.
- W117451968 hasRelatedWork W1998719498 @default.
- W117451968 hasRelatedWork W2030169945 @default.
- W117451968 hasRelatedWork W2073856838 @default.
- W117451968 hasRelatedWork W2093607032 @default.
- W117451968 hasRelatedWork W2126700655 @default.
- W117451968 hasRelatedWork W2314635900 @default.
- W117451968 hasRelatedWork W2385536457 @default.
- W117451968 hasRelatedWork W2462448635 @default.
- W117451968 hasRelatedWork W2561840994 @default.
- W117451968 hasRelatedWork W2949288813 @default.
- W117451968 hasRelatedWork W2952193202 @default.
- W117451968 hasRelatedWork W2962739461 @default.
- W117451968 hasRelatedWork W2963271319 @default.
- W117451968 hasRelatedWork W2964082818 @default.
- W117451968 hasRelatedWork W3100535620 @default.
- W117451968 hasRelatedWork W54904829 @default.
- W117451968 isParatext "false" @default.
- W117451968 isRetracted "false" @default.
- W117451968 magId "117451968" @default.
- W117451968 workType "book-chapter" @default.