Matches in SemOpenAlex for { <https://semopenalex.org/work/W118864897> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W118864897 abstract "Image processing has been a traditional engineering field, which has a broad range of applications in science, engineering and industry. Not long ago, statistical and ad hoc methods had been main tools for studying and analyzing image processing problems. In the past decade, a new approach based on variational and partial differential equation (PDE) methods has emerged as a more powerful approach. Compared with old approaches, variational and PDE methods have remarkable advantages in both theory and computation. It allows to directly handle and process visually important geometric features such as gradients, tangents and curvatures, and to model visually meaningful dynamic process such as linear and nonlinear diffusions. Computationally, it can greatly benefit from the existing wealthy numerical methods for PDEs. Mathematically, a (digital) greyscale image is often described by a matrix and each entry of the matrix represents a pixel value of the image and the size of the matrix indicates the resolution of the image. A (digital) color image is a digital image that includes color information for each pixel. For visually acceptable results, it is necessary (and almost sufficient) to provide three color channels for each pixel, which are interpreted as coordinates in some color space. The RGB (Red, Green, Blue) color space is commonly used in computer displays. Mathematically, a RGB color image is described by a stack of three matrices so that each color pixel value of the RGB color image is represented by a three-dimensional vector consisting values vi from the RGB channels. The brightness and chromaticity (or polar) decomposition of a color image means to write the three-dimensional color vector as the product of its length, which is called the brightness, and its direction, which is defined as the chromaticity. As a result, the chromaticity must lie on the unit sphere S in R. The primary objectives of this thesis are to present and to implement a class of variational and PDE models and methods for color image denoising based on the brightness and chromaticity decomposition. For a given noisy digital image, we propose to use the well-known Total Variation (TV) model to denoise its brightness and to use a generalized p-harmonic map model to denoise its chromaticity. We derive the Euler-Lagrange equations for these models and formulate the gradient descent method (in the name of gradient flows) for computing the solutions of these equations. We then formulate finite element schemes for approximating the gradient flows and implement these schemes on computers using Matlabr and Comsol Multiphysicsr software packages. Finally, we propose some generalizations of the p-harmonic map model, and numerically compare these models with the well-known channel-by-channel model." @default.
- W118864897 created "2016-06-24" @default.
- W118864897 creator A5047555816 @default.
- W118864897 date "2006-01-01" @default.
- W118864897 modified "2023-09-25" @default.
- W118864897 title "Variational and Partial Differential Equation Models for Color Image Denoising and Their Numerical Approximations using Finite Element Methods" @default.
- W118864897 cites W1488494310 @default.
- W118864897 cites W1489458628 @default.
- W118864897 cites W1533162639 @default.
- W118864897 cites W1553707579 @default.
- W118864897 cites W1965468781 @default.
- W118864897 cites W1970734370 @default.
- W118864897 cites W2011530793 @default.
- W118864897 cites W2022088322 @default.
- W118864897 cites W2026912579 @default.
- W118864897 cites W2027401313 @default.
- W118864897 cites W2039939700 @default.
- W118864897 cites W2083920473 @default.
- W118864897 cites W2103559027 @default.
- W118864897 cites W2122752532 @default.
- W118864897 cites W2149381765 @default.
- W118864897 cites W2276659035 @default.
- W118864897 cites W3021722416 @default.
- W118864897 hasPublicationYear "2006" @default.
- W118864897 type Work @default.
- W118864897 sameAs 118864897 @default.
- W118864897 citedByCount "0" @default.
- W118864897 crossrefType "journal-article" @default.
- W118864897 hasAuthorship W118864897A5047555816 @default.
- W118864897 hasConcept C11413529 @default.
- W118864897 hasConcept C115961682 @default.
- W118864897 hasConcept C12043971 @default.
- W118864897 hasConcept C142616399 @default.
- W118864897 hasConcept C154945302 @default.
- W118864897 hasConcept C159784718 @default.
- W118864897 hasConcept C160633673 @default.
- W118864897 hasConcept C173752661 @default.
- W118864897 hasConcept C2961294 @default.
- W118864897 hasConcept C31972630 @default.
- W118864897 hasConcept C33923547 @default.
- W118864897 hasConcept C41008148 @default.
- W118864897 hasConcept C82990744 @default.
- W118864897 hasConcept C91522604 @default.
- W118864897 hasConcept C9417928 @default.
- W118864897 hasConceptScore W118864897C11413529 @default.
- W118864897 hasConceptScore W118864897C115961682 @default.
- W118864897 hasConceptScore W118864897C12043971 @default.
- W118864897 hasConceptScore W118864897C142616399 @default.
- W118864897 hasConceptScore W118864897C154945302 @default.
- W118864897 hasConceptScore W118864897C159784718 @default.
- W118864897 hasConceptScore W118864897C160633673 @default.
- W118864897 hasConceptScore W118864897C173752661 @default.
- W118864897 hasConceptScore W118864897C2961294 @default.
- W118864897 hasConceptScore W118864897C31972630 @default.
- W118864897 hasConceptScore W118864897C33923547 @default.
- W118864897 hasConceptScore W118864897C41008148 @default.
- W118864897 hasConceptScore W118864897C82990744 @default.
- W118864897 hasConceptScore W118864897C91522604 @default.
- W118864897 hasConceptScore W118864897C9417928 @default.
- W118864897 hasLocation W1188648971 @default.
- W118864897 hasOpenAccess W118864897 @default.
- W118864897 hasPrimaryLocation W1188648971 @default.
- W118864897 hasRelatedWork W1241695199 @default.
- W118864897 hasRelatedWork W1482991727 @default.
- W118864897 hasRelatedWork W1554313558 @default.
- W118864897 hasRelatedWork W1559095175 @default.
- W118864897 hasRelatedWork W1973159289 @default.
- W118864897 hasRelatedWork W1973657205 @default.
- W118864897 hasRelatedWork W1973801737 @default.
- W118864897 hasRelatedWork W2100997714 @default.
- W118864897 hasRelatedWork W2127216513 @default.
- W118864897 hasRelatedWork W2146139317 @default.
- W118864897 hasRelatedWork W2223359714 @default.
- W118864897 hasRelatedWork W2752932666 @default.
- W118864897 hasRelatedWork W2781710002 @default.
- W118864897 hasRelatedWork W2795187242 @default.
- W118864897 hasRelatedWork W2897426251 @default.
- W118864897 hasRelatedWork W2974585710 @default.
- W118864897 hasRelatedWork W3093196859 @default.
- W118864897 hasRelatedWork W3100553499 @default.
- W118864897 hasRelatedWork W3169566770 @default.
- W118864897 hasRelatedWork W2880484425 @default.
- W118864897 isParatext "false" @default.
- W118864897 isRetracted "false" @default.
- W118864897 magId "118864897" @default.
- W118864897 workType "article" @default.