Matches in SemOpenAlex for { <https://semopenalex.org/work/W1190147142> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W1190147142 endingPage "200" @default.
- W1190147142 startingPage "178" @default.
- W1190147142 abstract "Most physical systems in reality exhibit a nonlinear relationship between input and output variables. This nonlinearity can manifest itself in terms of piecewise continuous functions or bifurcations, between some or all of the variables. The aims of this paper are two-fold. Firstly, a mixture of experts (MoE) model was trained on different physical systems exhibiting these types of nonlinearities. MoE models separate the input space into homogeneous regions and a different expert is responsible for the different regions. In this paper, the experts were low order polynomial regression models, thus avoiding the need for high-order polynomials. The model was trained within a Bayesian framework using variational Bayes, whereby a novel approach within the MoE literature was used in order to determine the number of experts in the model. Secondly, Bayesian sensitivity analysis (SA) of the systems under investigation was performed using the identified probabilistic MoE model in order to assess how uncertainty in the output can be attributed to uncertainty in the different inputs. The proposed methodology was first tested on a bifurcating Duffing oscillator, and it was then applied to real data sets obtained from the Tamar and Z24 bridges. In all cases, the MoE model was successful in identifying bifurcations and different physical regimes in the data by accurately dividing the input space; including identifying boundaries that were not parallel to coordinate axes." @default.
- W1190147142 created "2016-06-24" @default.
- W1190147142 creator A5006988694 @default.
- W1190147142 creator A5017996489 @default.
- W1190147142 creator A5039951670 @default.
- W1190147142 creator A5058104595 @default.
- W1190147142 date "2016-01-01" @default.
- W1190147142 modified "2023-09-23" @default.
- W1190147142 title "Variational Bayesian mixture of experts models and sensitivity analysis for nonlinear dynamical systems" @default.
- W1190147142 cites W103882020 @default.
- W1190147142 cites W1981796042 @default.
- W1190147142 cites W1993528913 @default.
- W1190147142 cites W2016534479 @default.
- W1190147142 cites W2025653905 @default.
- W1190147142 cites W2029767409 @default.
- W1190147142 cites W2068238590 @default.
- W1190147142 cites W2088765131 @default.
- W1190147142 cites W2092271904 @default.
- W1190147142 cites W2094460095 @default.
- W1190147142 cites W2129891212 @default.
- W1190147142 cites W2135892144 @default.
- W1190147142 cites W2139701068 @default.
- W1190147142 cites W2150884987 @default.
- W1190147142 cites W2167823677 @default.
- W1190147142 cites W4246165039 @default.
- W1190147142 cites W993712435 @default.
- W1190147142 doi "https://doi.org/10.1016/j.ymssp.2015.05.009" @default.
- W1190147142 hasPublicationYear "2016" @default.
- W1190147142 type Work @default.
- W1190147142 sameAs 1190147142 @default.
- W1190147142 citedByCount "24" @default.
- W1190147142 countsByYear W11901471422016 @default.
- W1190147142 countsByYear W11901471422017 @default.
- W1190147142 countsByYear W11901471422018 @default.
- W1190147142 countsByYear W11901471422020 @default.
- W1190147142 countsByYear W11901471422021 @default.
- W1190147142 countsByYear W11901471422022 @default.
- W1190147142 countsByYear W11901471422023 @default.
- W1190147142 crossrefType "journal-article" @default.
- W1190147142 hasAuthorship W1190147142A5006988694 @default.
- W1190147142 hasAuthorship W1190147142A5017996489 @default.
- W1190147142 hasAuthorship W1190147142A5039951670 @default.
- W1190147142 hasAuthorship W1190147142A5058104595 @default.
- W1190147142 hasConcept C107673813 @default.
- W1190147142 hasConcept C119857082 @default.
- W1190147142 hasConcept C121332964 @default.
- W1190147142 hasConcept C121864883 @default.
- W1190147142 hasConcept C127413603 @default.
- W1190147142 hasConcept C154945302 @default.
- W1190147142 hasConcept C158622935 @default.
- W1190147142 hasConcept C21200559 @default.
- W1190147142 hasConcept C24326235 @default.
- W1190147142 hasConcept C2775924081 @default.
- W1190147142 hasConcept C28826006 @default.
- W1190147142 hasConcept C2983030100 @default.
- W1190147142 hasConcept C33923547 @default.
- W1190147142 hasConcept C41008148 @default.
- W1190147142 hasConcept C47446073 @default.
- W1190147142 hasConcept C62520636 @default.
- W1190147142 hasConcept C79379906 @default.
- W1190147142 hasConceptScore W1190147142C107673813 @default.
- W1190147142 hasConceptScore W1190147142C119857082 @default.
- W1190147142 hasConceptScore W1190147142C121332964 @default.
- W1190147142 hasConceptScore W1190147142C121864883 @default.
- W1190147142 hasConceptScore W1190147142C127413603 @default.
- W1190147142 hasConceptScore W1190147142C154945302 @default.
- W1190147142 hasConceptScore W1190147142C158622935 @default.
- W1190147142 hasConceptScore W1190147142C21200559 @default.
- W1190147142 hasConceptScore W1190147142C24326235 @default.
- W1190147142 hasConceptScore W1190147142C2775924081 @default.
- W1190147142 hasConceptScore W1190147142C28826006 @default.
- W1190147142 hasConceptScore W1190147142C2983030100 @default.
- W1190147142 hasConceptScore W1190147142C33923547 @default.
- W1190147142 hasConceptScore W1190147142C41008148 @default.
- W1190147142 hasConceptScore W1190147142C47446073 @default.
- W1190147142 hasConceptScore W1190147142C62520636 @default.
- W1190147142 hasConceptScore W1190147142C79379906 @default.
- W1190147142 hasLocation W11901471421 @default.
- W1190147142 hasOpenAccess W1190147142 @default.
- W1190147142 hasPrimaryLocation W11901471421 @default.
- W1190147142 hasRelatedWork W1965977490 @default.
- W1190147142 hasRelatedWork W2067247051 @default.
- W1190147142 hasRelatedWork W2099665332 @default.
- W1190147142 hasRelatedWork W2109645051 @default.
- W1190147142 hasRelatedWork W2116410415 @default.
- W1190147142 hasRelatedWork W2542060645 @default.
- W1190147142 hasRelatedWork W2981998189 @default.
- W1190147142 hasRelatedWork W3121305084 @default.
- W1190147142 hasRelatedWork W3185784018 @default.
- W1190147142 hasRelatedWork W2147831146 @default.
- W1190147142 hasVolume "66-67" @default.
- W1190147142 isParatext "false" @default.
- W1190147142 isRetracted "false" @default.
- W1190147142 magId "1190147142" @default.
- W1190147142 workType "article" @default.