Matches in SemOpenAlex for { <https://semopenalex.org/work/W11937046> ?p ?o ?g. }
- W11937046 abstract "In this paper, we attempts to learn a single metric across two heterogeneous domains where source domain is fully labeled and has many samples while target domain has only a few labeled samples but abundant unlabeled samples. To the best of our knowledge, this task is seldom touched. The proposed learning model has a simple underlying motivation: all the samples in both the source and the target domains are mapped into a common space, where both their priors P(sample)s and their posteriors P(label|sample)s are forced to be respectively aligned as much as possible. We show that the two mappings, from both the source domain and the target domain to the common space, can be reparameterized into a single positive semi-definite(PSD) matrix. Then we develop an efficient Bregman Projection algorithm to optimize the PDS matrix over which a LogDet function is used to regularize. Furthermore, we also show that this model can be easily kernelized and verify its effectiveness in crosslanguage retrieval task and cross-domain object recognition task." @default.
- W11937046 created "2016-06-24" @default.
- W11937046 creator A5029012645 @default.
- W11937046 creator A5072516124 @default.
- W11937046 date "2012-08-09" @default.
- W11937046 modified "2023-09-27" @default.
- W11937046 title "Metric Learning across Heterogeneous Domains by Respectively Aligning Both Priors and Posteriors" @default.
- W11937046 cites W118019982 @default.
- W11937046 cites W16591383 @default.
- W11937046 cites W1677409904 @default.
- W11937046 cites W1722318740 @default.
- W11937046 cites W1834646128 @default.
- W11937046 cites W2015430519 @default.
- W11937046 cites W2033468335 @default.
- W11937046 cites W2036713601 @default.
- W11937046 cites W2090923791 @default.
- W11937046 cites W2097939965 @default.
- W11937046 cites W2106053110 @default.
- W11937046 cites W2117154949 @default.
- W11937046 cites W2120284069 @default.
- W11937046 cites W2120354757 @default.
- W11937046 cites W2124386111 @default.
- W11937046 cites W2124961556 @default.
- W11937046 cites W2130556178 @default.
- W11937046 cites W2133909527 @default.
- W11937046 cites W2142742813 @default.
- W11937046 cites W2156940638 @default.
- W11937046 cites W2158602558 @default.
- W11937046 cites W2159788726 @default.
- W11937046 cites W2168505892 @default.
- W11937046 cites W2169495281 @default.
- W11937046 cites W2397149706 @default.
- W11937046 cites W2913243980 @default.
- W11937046 cites W2950536412 @default.
- W11937046 cites W3119651796 @default.
- W11937046 cites W3146885639 @default.
- W11937046 cites W46086471 @default.
- W11937046 doi "https://doi.org/10.48550/arxiv.1208.1829" @default.
- W11937046 hasPublicationYear "2012" @default.
- W11937046 type Work @default.
- W11937046 sameAs 11937046 @default.
- W11937046 citedByCount "0" @default.
- W11937046 crossrefType "posted-content" @default.
- W11937046 hasAuthorship W11937046A5029012645 @default.
- W11937046 hasAuthorship W11937046A5072516124 @default.
- W11937046 hasBestOaLocation W119370461 @default.
- W11937046 hasConcept C100279318 @default.
- W11937046 hasConcept C106487976 @default.
- W11937046 hasConcept C107673813 @default.
- W11937046 hasConcept C111472728 @default.
- W11937046 hasConcept C111919701 @default.
- W11937046 hasConcept C11413529 @default.
- W11937046 hasConcept C121332964 @default.
- W11937046 hasConcept C134306372 @default.
- W11937046 hasConcept C138885662 @default.
- W11937046 hasConcept C14036430 @default.
- W11937046 hasConcept C153180895 @default.
- W11937046 hasConcept C154945302 @default.
- W11937046 hasConcept C159985019 @default.
- W11937046 hasConcept C162324750 @default.
- W11937046 hasConcept C176217482 @default.
- W11937046 hasConcept C177769412 @default.
- W11937046 hasConcept C187736073 @default.
- W11937046 hasConcept C192562407 @default.
- W11937046 hasConcept C198531522 @default.
- W11937046 hasConcept C21547014 @default.
- W11937046 hasConcept C2778572836 @default.
- W11937046 hasConcept C2780451532 @default.
- W11937046 hasConcept C2780586882 @default.
- W11937046 hasConcept C2781238097 @default.
- W11937046 hasConcept C33923547 @default.
- W11937046 hasConcept C36503486 @default.
- W11937046 hasConcept C41008148 @default.
- W11937046 hasConcept C57493831 @default.
- W11937046 hasConcept C78458016 @default.
- W11937046 hasConcept C86803240 @default.
- W11937046 hasConcept C97355855 @default.
- W11937046 hasConceptScore W11937046C100279318 @default.
- W11937046 hasConceptScore W11937046C106487976 @default.
- W11937046 hasConceptScore W11937046C107673813 @default.
- W11937046 hasConceptScore W11937046C111472728 @default.
- W11937046 hasConceptScore W11937046C111919701 @default.
- W11937046 hasConceptScore W11937046C11413529 @default.
- W11937046 hasConceptScore W11937046C121332964 @default.
- W11937046 hasConceptScore W11937046C134306372 @default.
- W11937046 hasConceptScore W11937046C138885662 @default.
- W11937046 hasConceptScore W11937046C14036430 @default.
- W11937046 hasConceptScore W11937046C153180895 @default.
- W11937046 hasConceptScore W11937046C154945302 @default.
- W11937046 hasConceptScore W11937046C159985019 @default.
- W11937046 hasConceptScore W11937046C162324750 @default.
- W11937046 hasConceptScore W11937046C176217482 @default.
- W11937046 hasConceptScore W11937046C177769412 @default.
- W11937046 hasConceptScore W11937046C187736073 @default.
- W11937046 hasConceptScore W11937046C192562407 @default.
- W11937046 hasConceptScore W11937046C198531522 @default.
- W11937046 hasConceptScore W11937046C21547014 @default.
- W11937046 hasConceptScore W11937046C2778572836 @default.
- W11937046 hasConceptScore W11937046C2780451532 @default.
- W11937046 hasConceptScore W11937046C2780586882 @default.