Matches in SemOpenAlex for { <https://semopenalex.org/work/W119474782> ?p ?o ?g. }
- W119474782 endingPage "1193" @default.
- W119474782 startingPage "1186" @default.
- W119474782 abstract "Rational and Objectives To investigate whether a nonlinear-blending algorithm improves tumor conspicuity and image quality in the evaluation of renal masses at dual-energy computed tomography (DECT) during nephrographic phase of enhancement. Materials and Methods The Institutional Review Board approved this retrospective study from archival material from patients consenting to the use of medical records for research purposes. A retrospective review of contrast-enhanced abdominal DECT scans in 45 patients (mean age, 59.5 years; range, 24–84 years) was performed. DECT data were reconstructed using nonlinear and linear blending. A region of interest was located within tumors and adjacent normal parenchyma; attenuation differences and contrast-to-noise ratios (CNRs) were calculated for renal masses on nonlinear- and linear-blended images. The two datasets were subjectively compared in terms of tumor detection and image quality. An exact Wilcoxon's matched pairs signed rank and marginal homogeneity tests were used to test whether differences in attenuation, CNR, and subjective assessment were greater using nonlinear blending. Results The mean difference in attenuation for renal masses and adjacent portion of renal parenchyma was 138.4 Hounsfield units ± 28.9 SD using nonlinear blending, and 121.6 HU ± 18.0 SD using linear blending (P < .001). Mean CNR was 12.6 ± 2.5 SD using nonlinear blending, and 9.6 ± 2.2 SD using 0.3 linear-blended (P < .001). No significant difference in tumor detection was observed between the two algorithms. Image quality was significantly better (P < .001) using nonlinear blending. Conclusion Compared with standard linear blending, nonlinear-blending algorithm improves tumor conspicuity and image quality in renal masses at DECT evaluation during nephrographic phase of enhancement. To investigate whether a nonlinear-blending algorithm improves tumor conspicuity and image quality in the evaluation of renal masses at dual-energy computed tomography (DECT) during nephrographic phase of enhancement. The Institutional Review Board approved this retrospective study from archival material from patients consenting to the use of medical records for research purposes. A retrospective review of contrast-enhanced abdominal DECT scans in 45 patients (mean age, 59.5 years; range, 24–84 years) was performed. DECT data were reconstructed using nonlinear and linear blending. A region of interest was located within tumors and adjacent normal parenchyma; attenuation differences and contrast-to-noise ratios (CNRs) were calculated for renal masses on nonlinear- and linear-blended images. The two datasets were subjectively compared in terms of tumor detection and image quality. An exact Wilcoxon's matched pairs signed rank and marginal homogeneity tests were used to test whether differences in attenuation, CNR, and subjective assessment were greater using nonlinear blending. The mean difference in attenuation for renal masses and adjacent portion of renal parenchyma was 138.4 Hounsfield units ± 28.9 SD using nonlinear blending, and 121.6 HU ± 18.0 SD using linear blending (P < .001). Mean CNR was 12.6 ± 2.5 SD using nonlinear blending, and 9.6 ± 2.2 SD using 0.3 linear-blended (P < .001). No significant difference in tumor detection was observed between the two algorithms. Image quality was significantly better (P < .001) using nonlinear blending. Compared with standard linear blending, nonlinear-blending algorithm improves tumor conspicuity and image quality in renal masses at DECT evaluation during nephrographic phase of enhancement." @default.
- W119474782 created "2016-06-24" @default.
- W119474782 creator A5040168455 @default.
- W119474782 creator A5047810541 @default.
- W119474782 creator A5047938856 @default.
- W119474782 creator A5055780924 @default.
- W119474782 creator A5066390286 @default.
- W119474782 creator A5077377649 @default.
- W119474782 creator A5079007163 @default.
- W119474782 creator A5084865611 @default.
- W119474782 date "2012-10-01" @default.
- W119474782 modified "2023-10-14" @default.
- W119474782 title "Dual-energy Computed Tomography (DECT) in Renal Masses" @default.
- W119474782 cites W1966074176 @default.
- W119474782 cites W1970190550 @default.
- W119474782 cites W1974963207 @default.
- W119474782 cites W1987631989 @default.
- W119474782 cites W1987719059 @default.
- W119474782 cites W1988260083 @default.
- W119474782 cites W1994144846 @default.
- W119474782 cites W1998021485 @default.
- W119474782 cites W1998455600 @default.
- W119474782 cites W2000382546 @default.
- W119474782 cites W2001690563 @default.
- W119474782 cites W2004280012 @default.
- W119474782 cites W2009110061 @default.
- W119474782 cites W2041280958 @default.
- W119474782 cites W2053179887 @default.
- W119474782 cites W2058016882 @default.
- W119474782 cites W2063874718 @default.
- W119474782 cites W2076143811 @default.
- W119474782 cites W2078229312 @default.
- W119474782 cites W2098979743 @default.
- W119474782 cites W2102147099 @default.
- W119474782 cites W2102534151 @default.
- W119474782 cites W2114455786 @default.
- W119474782 cites W2117594689 @default.
- W119474782 cites W2119738760 @default.
- W119474782 cites W2120346255 @default.
- W119474782 cites W2150358707 @default.
- W119474782 cites W2158047352 @default.
- W119474782 cites W2164210934 @default.
- W119474782 cites W2164777277 @default.
- W119474782 doi "https://doi.org/10.1016/j.acra.2012.05.010" @default.
- W119474782 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22818789" @default.
- W119474782 hasPublicationYear "2012" @default.
- W119474782 type Work @default.
- W119474782 sameAs 119474782 @default.
- W119474782 citedByCount "39" @default.
- W119474782 countsByYear W1194747822012 @default.
- W119474782 countsByYear W1194747822013 @default.
- W119474782 countsByYear W1194747822014 @default.
- W119474782 countsByYear W1194747822015 @default.
- W119474782 countsByYear W1194747822016 @default.
- W119474782 countsByYear W1194747822017 @default.
- W119474782 countsByYear W1194747822018 @default.
- W119474782 countsByYear W1194747822020 @default.
- W119474782 countsByYear W1194747822021 @default.
- W119474782 countsByYear W1194747822022 @default.
- W119474782 countsByYear W1194747822023 @default.
- W119474782 crossrefType "journal-article" @default.
- W119474782 hasAuthorship W119474782A5040168455 @default.
- W119474782 hasAuthorship W119474782A5047810541 @default.
- W119474782 hasAuthorship W119474782A5047938856 @default.
- W119474782 hasAuthorship W119474782A5055780924 @default.
- W119474782 hasAuthorship W119474782A5066390286 @default.
- W119474782 hasAuthorship W119474782A5077377649 @default.
- W119474782 hasAuthorship W119474782A5079007163 @default.
- W119474782 hasAuthorship W119474782A5084865611 @default.
- W119474782 hasConcept C105795698 @default.
- W119474782 hasConcept C115961682 @default.
- W119474782 hasConcept C120665830 @default.
- W119474782 hasConcept C121332964 @default.
- W119474782 hasConcept C126322002 @default.
- W119474782 hasConcept C126838900 @default.
- W119474782 hasConcept C12868164 @default.
- W119474782 hasConcept C141071460 @default.
- W119474782 hasConcept C142259097 @default.
- W119474782 hasConcept C150432741 @default.
- W119474782 hasConcept C154945302 @default.
- W119474782 hasConcept C167135981 @default.
- W119474782 hasConcept C184652730 @default.
- W119474782 hasConcept C187954543 @default.
- W119474782 hasConcept C206041023 @default.
- W119474782 hasConcept C2776502983 @default.
- W119474782 hasConcept C2989005 @default.
- W119474782 hasConcept C33923547 @default.
- W119474782 hasConcept C41008148 @default.
- W119474782 hasConcept C544519230 @default.
- W119474782 hasConcept C55020928 @default.
- W119474782 hasConcept C555944384 @default.
- W119474782 hasConcept C71924100 @default.
- W119474782 hasConcept C76155785 @default.
- W119474782 hasConceptScore W119474782C105795698 @default.
- W119474782 hasConceptScore W119474782C115961682 @default.
- W119474782 hasConceptScore W119474782C120665830 @default.
- W119474782 hasConceptScore W119474782C121332964 @default.
- W119474782 hasConceptScore W119474782C126322002 @default.