Matches in SemOpenAlex for { <https://semopenalex.org/work/W122019689> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W122019689 endingPage "271" @default.
- W122019689 startingPage "240" @default.
- W122019689 abstract "This chapter discusses sulfidation by mixed H2–H2S gases and corrosion by several different types of mixed gases: sulfidation/oxidation by CO–CO2–COS and H2–H2O–H2S, oxidation/nitridation by O2–N2, and oxidation/carburization by C–CH4–H2O gases.The types of equipment and processes where these types of corrosion occur and the thermochemical reactions between the alloys and the corrosive environments to produce the corrosion products will be discussed. The corrosion products formed are used to name the dominant corrosion mechanism and help understand the effects of exposure conditions such as gas composition, gas flow rates, metal temperatures, exposure time, and alloy composition upon alloy corrosion. Previous approaches often used simplifying assumptions of pure and single component corrosion products to allow calculation of corrosion product thermochemistry. Presently available technology no longer requires these assumptions for real alloys. The important variables for adequate laboratory simulations of the industrial aspects of these corrosion mechanisms are also discussed. Corrosion is measured by total metal penetration, which is the sum of metal thickness consumed by surface scaling plus the metal thickness affected by internal corrosion product formation. The relative corrosion behaviors of commercial alloys and the methods used to predict their corrosion behaviors are also presented. These methods enable engineering corrosion assessments for ranges of exposure conditions and are used in corrosion research, alloy development, failure analysis, lifetime prediction, alloy selection for equipment fabrication, equipment maintenance scheduling, and process operations evaluations.Sulfidation by H2–H2S gases in high temperature process equipment occurs in many petroleum-refining processes. The key variables influencing the kinetics are exposure time, partial pressures of H2 (PH2), and H2S (PH2S) for H2 and H2S gases or partial pressures of CO (PCO) and COS (PCOS) for CO–COS gases, alloy composition and temperature, for gases lacking significant amounts of oxidizing gases like O2, H2O, or CO2, which could induce formation of oxides.Sulfidation/oxidation by CO–CO2–COS and H2–H2O–H2S occurs in petroleum refining and energy conversion processes in various industries. The key variables influencing the kinetics are exposure time, PO2, PS2, alloy composition, and temperature. New understanding allows laboratory testing with CO–CO2–COS gases to simulate the corrosivity in industrial environments of H2–H2O–H2S gases is also discussed. The PO2 and PS2 values of the gaseous conditions combined with temperature and alloy composition determine the sulfide and oxide corrosion product stabilities, which determine the corrosion behavior. Considerations in using short-term laboratory tests to project long-term corrosion behavior in industrial conditions are also reviewed.Oxidation/nitridation by O2–N2 gases occurs in various industrial equipment involved in fossil fuel combustion, fertilizer manufacturing, or ammonia production. The key variables influencing the kinetics are exposure time, partial pressures of O2 and N2, alloy composition, and temperature. The variation from a high PO2 to low PO2 can induce changes in the corrosion products and rates of corrosion. The oxidation behavior can vary from predominantly surface oxidation (scaling) to oxidation by internal oxidation as the PO2 decreases, depending upon alloy composition. Progression to lower levels of PO2, will induce nitridation to dominate over oxidation. These observations impact how laboratory tests can best simulate corrosion behavior by oxidation or nitridation and also in terms of applications where low PO2 levels may differ from expectations in O2–N2 gases.Oxidation/carburization by CH4–H2O occurs in petroleum refining and petrochemical industry processes. The key variables influencing the kinetics are exposure time, PO2, activity of carbon (aC), partial pressure of H2S (PH2S), alloy composition, and temperature. Alloys exposed to C–CH4–H2O mixtures can experience corrosion by oxidation and carburization. The transition between carburization and oxidation behaviors of commercial alloys will be discussed." @default.
- W122019689 created "2016-06-24" @default.
- W122019689 creator A5042502531 @default.
- W122019689 date "2010-01-01" @default.
- W122019689 modified "2023-10-16" @default.
- W122019689 title "Sulfidation and Mixed Gas Corrosion of Alloys" @default.
- W122019689 cites W127391145 @default.
- W122019689 cites W1993290078 @default.
- W122019689 cites W1995584266 @default.
- W122019689 cites W2011176547 @default.
- W122019689 cites W2014260033 @default.
- W122019689 cites W2017281007 @default.
- W122019689 cites W2061761846 @default.
- W122019689 cites W2076371134 @default.
- W122019689 cites W2087821329 @default.
- W122019689 cites W2091294849 @default.
- W122019689 cites W2107781233 @default.
- W122019689 cites W2116337481 @default.
- W122019689 cites W2125406263 @default.
- W122019689 cites W2315456031 @default.
- W122019689 cites W2317966757 @default.
- W122019689 cites W2564711794 @default.
- W122019689 cites W258803668 @default.
- W122019689 cites W4244381712 @default.
- W122019689 cites W4256015428 @default.
- W122019689 doi "https://doi.org/10.1016/b978-044452787-5.00014-7" @default.
- W122019689 hasPublicationYear "2010" @default.
- W122019689 type Work @default.
- W122019689 sameAs 122019689 @default.
- W122019689 citedByCount "11" @default.
- W122019689 countsByYear W1220196892013 @default.
- W122019689 countsByYear W1220196892014 @default.
- W122019689 countsByYear W1220196892016 @default.
- W122019689 countsByYear W1220196892017 @default.
- W122019689 countsByYear W1220196892020 @default.
- W122019689 countsByYear W1220196892021 @default.
- W122019689 countsByYear W1220196892023 @default.
- W122019689 crossrefType "book-chapter" @default.
- W122019689 hasAuthorship W122019689A5042502531 @default.
- W122019689 hasConcept C191897082 @default.
- W122019689 hasConcept C192562407 @default.
- W122019689 hasConcept C20625102 @default.
- W122019689 hasConcept C2778480967 @default.
- W122019689 hasConcept C39432304 @default.
- W122019689 hasConcept C518881349 @default.
- W122019689 hasConceptScore W122019689C191897082 @default.
- W122019689 hasConceptScore W122019689C192562407 @default.
- W122019689 hasConceptScore W122019689C20625102 @default.
- W122019689 hasConceptScore W122019689C2778480967 @default.
- W122019689 hasConceptScore W122019689C39432304 @default.
- W122019689 hasConceptScore W122019689C518881349 @default.
- W122019689 hasLocation W1220196891 @default.
- W122019689 hasOpenAccess W122019689 @default.
- W122019689 hasPrimaryLocation W1220196891 @default.
- W122019689 hasRelatedWork W1984361132 @default.
- W122019689 hasRelatedWork W2081283825 @default.
- W122019689 hasRelatedWork W2102778007 @default.
- W122019689 hasRelatedWork W2129123438 @default.
- W122019689 hasRelatedWork W2353347436 @default.
- W122019689 hasRelatedWork W2474267145 @default.
- W122019689 hasRelatedWork W2899084033 @default.
- W122019689 hasRelatedWork W4252598336 @default.
- W122019689 hasRelatedWork W86114234 @default.
- W122019689 hasRelatedWork W2130080798 @default.
- W122019689 isParatext "false" @default.
- W122019689 isRetracted "false" @default.
- W122019689 magId "122019689" @default.
- W122019689 workType "book-chapter" @default.