Matches in SemOpenAlex for { <https://semopenalex.org/work/W122531626> ?p ?o ?g. }
- W122531626 endingPage "76" @default.
- W122531626 startingPage "1" @default.
- W122531626 abstract "Sea ice is permeated by small brine channels, which are characterised by sub-zero temperatures and varying salinities. Despite sometimes extreme conditions a relatively diverse fauna and flora thrives within these brine channels. Stephos longipes, Paralabidocera antarctica and Drescheriella glacialis are the dominant copepod species found within Antarctic sea ice. Their life-cycle strategies are well-established, but life cycles of other meiofauna (metazoans > 50 µm) found within sea ice are little explored. Adaptation mechanisms allowing meiofauna species to survive within sea ice are largely unknown. In order to increase our knowledge of the Antarctic sea-ice meiofauna, different microhabitats of sea ice and their metazoan fauna were studied during two cruises with R/V “Polarstern” to the western Weddell Sea. The dominant sympagic copepod species found in the sub-ice layer was Ectinosoma sp., other sympagic copepod species occurring regularly were D. glacialis/racovitzai, Diarthrodes cf. lilacinus, Idomene antarctica and S. longipes. Drescheriella glacialis/racovitzai and Stephos longipes were the dominant members of the surface-layer meiofauna during late spring. Their populations consisted mainly of adults and early naupliar stages in this layer, which points to an active reproduction of these species within the surface layer. Other taxa found in the surface layer were undetermined turbellarians, the gastropod Tergipes antarcticus, a ctenophore and two amphipod species. Sampling records from the Bellingshausen Sea, the Weddell Sea, as well as from the Prydz and the Lutzow-Holm Bay indicate that T. antarcticus is widely distributed in Antarctic sea ice. During this study, adults, juveniles, veliger larvae and egg clutches of T. antarcticus were found in sea ice. A thorough morphological and anatomical description of all life stages was performed and the developmental time from egg to veliger larvae was determined as being 31 days (range: 13 to 65 days) at 0 °C. The observed reproduction of D. racovitzai, Idomene antarctica and T. antarcticus within the habitat allows to assign also these species as true members of the sea-ice meiofauna. Adaptation mechanisms to changing salinities and ice formation were studied for P. antarctica, S. longipes and T. antarcticus. The haemolymph of the two copepod species is isosmotic to the medium at salinities from 25 to 45 g/kg (S. longipes) and 25 to 55 g/kg (P. antarctica). Thermal hysteresis (a non-colligative inhibition of ice growth) was found for T. antarcticus and S. longipes, but not for P. antarctica. These are the first reports of thermal hysteresis from gastropods and crustaceans, respectively. The acquisition of thermal hysteresis seems to enable S. longipes to exploit all available microhabitats within sea ice. In particular, S. longipes is found in high abundances in the surface layer, in which stronger temperature fluctuations can occur than in the lowermost centimetres of the ice. P. antarctica seems to be restricted physiologically to the lower layer. T. antarcticus was also found in the surface layer, but the importance of thermal hysteresis for habitat choice in T. antarcticus remains to be shown. Thermal hysteresis is probably also a prerequisite for the ability of S. longipes and T. antarcticus to spawn within the ice. Adaptations to low temperatures and elevated salinties on the transcriptional level were investigated for S. longipes. Two isoforms of a protein were found, which, if recombinantly expressed, confers thermal hysteresis. A high homology to a group of (putative) antifreeze proteins from a bacterium, a snow mold and several diatoms and, in contrast, no homologs in any metazoan lineage suggest that this protein was obtained through horizontal gene transfer. This seems to be a key event in the evolution of S. longipes." @default.
- W122531626 created "2016-06-24" @default.
- W122531626 creator A5059058911 @default.
- W122531626 date "2009-02-17" @default.
- W122531626 modified "2023-09-24" @default.
- W122531626 title "Ecophysiology of Antarctic sea-ice meiofauna" @default.
- W122531626 cites W115669184 @default.
- W122531626 cites W1411252395 @default.
- W122531626 cites W1480895211 @default.
- W122531626 cites W1482175695 @default.
- W122531626 cites W1482694869 @default.
- W122531626 cites W1485969580 @default.
- W122531626 cites W1513749753 @default.
- W122531626 cites W1519027816 @default.
- W122531626 cites W1520607111 @default.
- W122531626 cites W1522993673 @default.
- W122531626 cites W154906622 @default.
- W122531626 cites W1555717077 @default.
- W122531626 cites W1574899827 @default.
- W122531626 cites W1575191921 @default.
- W122531626 cites W1579389628 @default.
- W122531626 cites W1579785391 @default.
- W122531626 cites W1607993511 @default.
- W122531626 cites W1662762169 @default.
- W122531626 cites W1730331799 @default.
- W122531626 cites W1890770518 @default.
- W122531626 cites W1928695543 @default.
- W122531626 cites W1963892933 @default.
- W122531626 cites W1965823353 @default.
- W122531626 cites W1966165014 @default.
- W122531626 cites W1967213201 @default.
- W122531626 cites W1969748015 @default.
- W122531626 cites W1970487814 @default.
- W122531626 cites W1970590897 @default.
- W122531626 cites W1972304226 @default.
- W122531626 cites W1973805029 @default.
- W122531626 cites W1974100825 @default.
- W122531626 cites W1974258296 @default.
- W122531626 cites W1977972912 @default.
- W122531626 cites W1978464110 @default.
- W122531626 cites W1980759346 @default.
- W122531626 cites W1982526303 @default.
- W122531626 cites W1982766433 @default.
- W122531626 cites W1983026700 @default.
- W122531626 cites W1985662216 @default.
- W122531626 cites W1986196863 @default.
- W122531626 cites W1986569474 @default.
- W122531626 cites W1989784802 @default.
- W122531626 cites W1990571896 @default.
- W122531626 cites W1991313179 @default.
- W122531626 cites W1991467234 @default.
- W122531626 cites W1992317368 @default.
- W122531626 cites W1994579129 @default.
- W122531626 cites W1995374053 @default.
- W122531626 cites W1995684576 @default.
- W122531626 cites W1995862894 @default.
- W122531626 cites W1996428428 @default.
- W122531626 cites W1997228500 @default.
- W122531626 cites W1998944503 @default.
- W122531626 cites W1999190077 @default.
- W122531626 cites W2000194680 @default.
- W122531626 cites W2002675579 @default.
- W122531626 cites W2004359105 @default.
- W122531626 cites W2005476972 @default.
- W122531626 cites W2006207812 @default.
- W122531626 cites W2007378004 @default.
- W122531626 cites W2008773686 @default.
- W122531626 cites W2009400926 @default.
- W122531626 cites W2009953299 @default.
- W122531626 cites W2010739546 @default.
- W122531626 cites W2012617920 @default.
- W122531626 cites W2012682614 @default.
- W122531626 cites W2013806152 @default.
- W122531626 cites W2016538867 @default.
- W122531626 cites W2018413580 @default.
- W122531626 cites W2021954208 @default.
- W122531626 cites W2022235182 @default.
- W122531626 cites W2023408218 @default.
- W122531626 cites W2023610714 @default.
- W122531626 cites W2027181165 @default.
- W122531626 cites W2027475716 @default.
- W122531626 cites W2028247714 @default.
- W122531626 cites W2028789599 @default.
- W122531626 cites W2029531658 @default.
- W122531626 cites W2030746392 @default.
- W122531626 cites W2031541278 @default.
- W122531626 cites W2034039941 @default.
- W122531626 cites W2037541594 @default.
- W122531626 cites W2037910477 @default.
- W122531626 cites W2039905603 @default.
- W122531626 cites W2043582377 @default.
- W122531626 cites W2044962742 @default.
- W122531626 cites W2049561059 @default.
- W122531626 cites W2051395613 @default.
- W122531626 cites W2051683338 @default.
- W122531626 cites W2056193586 @default.
- W122531626 cites W2057715888 @default.
- W122531626 cites W2060526819 @default.