Matches in SemOpenAlex for { <https://semopenalex.org/work/W12260767> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W12260767 abstract "Bayesian network (BN) has been successfully applied in hierarchical student models. Some researchers used diagnostic strategies to improve the evidence level of student models. But test items are typically related to a dichotomous response model, namely students’ answers are scored as right or wrong. As we know, wrong answers result from lacking one or more relevant concepts in students’ knowledge states. This diagnostic information of wrong answers is ignored. To maximize the precision of student model, this paper presents an approach using diagnostic items, which are designed to provide the information about which concepts are probably lacked in students’ knowledge states when they give wrong answers. A modified NIDA (Noisy Input, Deterministic AND) model is built to represent the relations between students’ answers and their knowledge states. We use simulated students to evaluate our model and the results show that the efficiency and accuracy of student modeling are improved." @default.
- W12260767 created "2016-06-24" @default.
- W12260767 creator A5013543532 @default.
- W12260767 creator A5020819058 @default.
- W12260767 creator A5091012182 @default.
- W12260767 date "2014-01-01" @default.
- W12260767 modified "2023-10-14" @default.
- W12260767 title "Bayesian Student Modeling Improved by Diagnostic Items" @default.
- W12260767 cites W1505686650 @default.
- W12260767 cites W1529098247 @default.
- W12260767 cites W1571059395 @default.
- W12260767 cites W1987626674 @default.
- W12260767 cites W2120399696 @default.
- W12260767 cites W2163566104 @default.
- W12260767 cites W2165814930 @default.
- W12260767 cites W53364377 @default.
- W12260767 doi "https://doi.org/10.1007/978-3-319-07221-0_17" @default.
- W12260767 hasPublicationYear "2014" @default.
- W12260767 type Work @default.
- W12260767 sameAs 12260767 @default.
- W12260767 citedByCount "4" @default.
- W12260767 countsByYear W122607672015 @default.
- W12260767 countsByYear W122607672016 @default.
- W12260767 countsByYear W122607672019 @default.
- W12260767 crossrefType "book-chapter" @default.
- W12260767 hasAuthorship W12260767A5013543532 @default.
- W12260767 hasAuthorship W12260767A5020819058 @default.
- W12260767 hasAuthorship W12260767A5091012182 @default.
- W12260767 hasConcept C107673813 @default.
- W12260767 hasConcept C119857082 @default.
- W12260767 hasConcept C154945302 @default.
- W12260767 hasConcept C41008148 @default.
- W12260767 hasConceptScore W12260767C107673813 @default.
- W12260767 hasConceptScore W12260767C119857082 @default.
- W12260767 hasConceptScore W12260767C154945302 @default.
- W12260767 hasConceptScore W12260767C41008148 @default.
- W12260767 hasLocation W122607671 @default.
- W12260767 hasLocation W122607672 @default.
- W12260767 hasOpenAccess W12260767 @default.
- W12260767 hasPrimaryLocation W122607671 @default.
- W12260767 hasRelatedWork W2961085424 @default.
- W12260767 hasRelatedWork W3046775127 @default.
- W12260767 hasRelatedWork W3170094116 @default.
- W12260767 hasRelatedWork W4205958290 @default.
- W12260767 hasRelatedWork W4285260836 @default.
- W12260767 hasRelatedWork W4286629047 @default.
- W12260767 hasRelatedWork W4306321456 @default.
- W12260767 hasRelatedWork W4306674287 @default.
- W12260767 hasRelatedWork W4386462264 @default.
- W12260767 hasRelatedWork W4224009465 @default.
- W12260767 isParatext "false" @default.
- W12260767 isRetracted "false" @default.
- W12260767 magId "12260767" @default.
- W12260767 workType "book-chapter" @default.