Matches in SemOpenAlex for { <https://semopenalex.org/work/W122741332> ?p ?o ?g. }
- W122741332 abstract "Importance of an alternative sensor system to an inertial measurement unit (IMU) is essential for intelligent land navigation systems when the vehicle travels in a GPS deprived environment. The sensor system that has to be used in updating the IMU for a reliable navigation solution has to be a passive sensor system which does not depend on any outside signal. This dissertation presents the results of an effort where position and orientation data from vision and inertial sensors are integrated. Information from a sequence of images captured by a monocular camera attached to a survey vehicle at a maximum frequency of 3 frames per second was used in upgrading the inertial system installed in the same vehicle for its inherent error accumulation. Specifically, the rotations and translations estimated from point correspondences tracked through a sequence of images were used in the integration. However, for such an effort, two types of tasks need to be performed. The first task is the calibration to estimate the intrinsic properties of the vision sensors (cameras), such as the focal length and lens distortion parameters and determination of the transformation between the camera and the inertial systems. Calibration of a two sensor system under indoor conditions does not provide an appropriate and practical transformation for use in outdoor maneuvers due to invariable differences between outdoor and indoor conditions. Also, use of custom calibration objects in outdoor operational conditions is not feasible due to larger field of view that requires relatively large calibration object sizes. Hence calibration becomes one of the critical issues particularly if the integrated system is used in Intelligent Transportation Systems applications. In order to successfully estimate the rotations and translations from vision system the calibration has to be performed prior to the integration process. The second task is the effective fusion of inertial and vision sensor systems. The automated algorithm that identifies point correspondences in images enables its use in real-time autonomous driving maneuvers. In order to verify the accuracy of the established correspondences, independent constraints such as epipolar lines and correspondence flow directions were used. Also a pre-filter was utilized to smoothen out the noise associated with the vision sensor (camera) measurements. A novel approach was used to obtain the geodetic coordinates, i.e. latitude, longitude and altitude, from the normalized translations determined from the vision sensor. Finally, the position locations based on the vision sensor was integrated with those of the inertial system in a decentralized format using a Kalman filter. The vision/inertial integrated position estimates are successfully compared with those from (1) inertial/GPS system output and (2) actual survey performed on the same roadway. This comparison demonstrates that vision can in fact be used successfully to supplement the inertial measurements during potential GPS outages. The derived intrinsic properties and the transformation between individual sensors are also verified during two separate test runs on an actual roadway section." @default.
- W122741332 created "2016-06-24" @default.
- W122741332 creator A5020674314 @default.
- W122741332 creator A5049267134 @default.
- W122741332 creator A5063067750 @default.
- W122741332 date "2007-01-01" @default.
- W122741332 modified "2023-09-22" @default.
- W122741332 title "Automatic geo-referencing by integrating camera vision and inertial measurements" @default.
- W122741332 cites W1504934438 @default.
- W122741332 cites W1508960934 @default.
- W122741332 cites W1530875470 @default.
- W122741332 cites W1531218787 @default.
- W122741332 cites W1558470758 @default.
- W122741332 cites W1564768010 @default.
- W122741332 cites W1569116522 @default.
- W122741332 cites W1580264505 @default.
- W122741332 cites W1603609641 @default.
- W122741332 cites W1931825005 @default.
- W122741332 cites W1993267444 @default.
- W122741332 cites W2004427741 @default.
- W122741332 cites W2011191880 @default.
- W122741332 cites W2026297431 @default.
- W122741332 cites W2028310195 @default.
- W122741332 cites W2038470503 @default.
- W122741332 cites W2077709713 @default.
- W122741332 cites W2089373496 @default.
- W122741332 cites W2090485542 @default.
- W122741332 cites W2098692837 @default.
- W122741332 cites W2099901716 @default.
- W122741332 cites W2100376711 @default.
- W122741332 cites W2103378547 @default.
- W122741332 cites W2105934661 @default.
- W122741332 cites W2108371319 @default.
- W122741332 cites W2120310282 @default.
- W122741332 cites W2121426362 @default.
- W122741332 cites W2122512809 @default.
- W122741332 cites W2131076267 @default.
- W122741332 cites W2136929315 @default.
- W122741332 cites W2145023731 @default.
- W122741332 cites W2147774191 @default.
- W122741332 cites W2148498215 @default.
- W122741332 cites W2148755501 @default.
- W122741332 cites W2149433310 @default.
- W122741332 cites W2150235509 @default.
- W122741332 cites W2155036151 @default.
- W122741332 cites W2156233337 @default.
- W122741332 cites W2157641950 @default.
- W122741332 cites W2166505383 @default.
- W122741332 cites W2167667767 @default.
- W122741332 cites W2168970060 @default.
- W122741332 cites W2172713084 @default.
- W122741332 cites W2287255931 @default.
- W122741332 cites W2591012597 @default.
- W122741332 cites W3142851046 @default.
- W122741332 cites W3198682379 @default.
- W122741332 cites W747302728 @default.
- W122741332 hasPublicationYear "2007" @default.
- W122741332 type Work @default.
- W122741332 sameAs 122741332 @default.
- W122741332 citedByCount "0" @default.
- W122741332 crossrefType "journal-article" @default.
- W122741332 hasAuthorship W122741332A5020674314 @default.
- W122741332 hasAuthorship W122741332A5049267134 @default.
- W122741332 hasAuthorship W122741332A5063067750 @default.
- W122741332 hasConcept C10138342 @default.
- W122741332 hasConcept C104317684 @default.
- W122741332 hasConcept C105795698 @default.
- W122741332 hasConcept C121332964 @default.
- W122741332 hasConcept C126780896 @default.
- W122741332 hasConcept C128651787 @default.
- W122741332 hasConcept C150627866 @default.
- W122741332 hasConcept C151233233 @default.
- W122741332 hasConcept C154945302 @default.
- W122741332 hasConcept C158829959 @default.
- W122741332 hasConcept C162324750 @default.
- W122741332 hasConcept C16345878 @default.
- W122741332 hasConcept C165838908 @default.
- W122741332 hasConcept C185592680 @default.
- W122741332 hasConcept C194257627 @default.
- W122741332 hasConcept C198082294 @default.
- W122741332 hasConcept C204241405 @default.
- W122741332 hasConcept C2524010 @default.
- W122741332 hasConcept C2776257435 @default.
- W122741332 hasConcept C31258907 @default.
- W122741332 hasConcept C31972630 @default.
- W122741332 hasConcept C33923547 @default.
- W122741332 hasConcept C41008148 @default.
- W122741332 hasConcept C55493867 @default.
- W122741332 hasConcept C60229501 @default.
- W122741332 hasConcept C62520636 @default.
- W122741332 hasConcept C76155785 @default.
- W122741332 hasConcept C79061980 @default.
- W122741332 hasConceptScore W122741332C10138342 @default.
- W122741332 hasConceptScore W122741332C104317684 @default.
- W122741332 hasConceptScore W122741332C105795698 @default.
- W122741332 hasConceptScore W122741332C121332964 @default.
- W122741332 hasConceptScore W122741332C126780896 @default.
- W122741332 hasConceptScore W122741332C128651787 @default.
- W122741332 hasConceptScore W122741332C150627866 @default.
- W122741332 hasConceptScore W122741332C151233233 @default.