Matches in SemOpenAlex for { <https://semopenalex.org/work/W123212437> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W123212437 abstract "Genomic datasets, spanning many organisms and data types, are rapidly being produced, creating new opportunities for understanding the molecular mechanisms underlying human disease, and for studying complex biological processes on a global scale. Transforming these immense amounts of data into biological information is a challenging task. In this thesis, we address this challenge by presenting a statistical modeling language, based on Bayesian networks, for representing heterogeneous biological entities and modeling the mechanism by which they interact. We use statistical learning approaches in order to learn the details of these models (structure and parameters) automatically from raw genomic data. The biological insights are then derived directly from the learned model. We describe three applications of this framework to the study of gene regulation: (1) Understanding the process by which DNA patterns (motifs) in the control regions of genes play a role in controlling their activity. Using only DNA sequence and gene expression data as input, these models recovered many of the known motifs in yeast and several known motif combinations in human. (2) Finding regulatory modules and their actual regulator genes directly from gene expression data. Some of the predictions from this analysis were tested successfully in the wet-lab, suggesting regulatory roles for three previously uncharacterized proteins. (3) Combining gene expression profiles from several organisms for a more robust prediction of gene function and regulatory pathways, and for studying the degree to which regulatory relationships have been conserved across evolution." @default.
- W123212437 created "2016-06-24" @default.
- W123212437 creator A5012450539 @default.
- W123212437 creator A5051658526 @default.
- W123212437 date "2004-01-01" @default.
- W123212437 modified "2023-09-27" @default.
- W123212437 title "Rich probabilistic models for genomic data" @default.
- W123212437 cites W1987678450 @default.
- W123212437 cites W2140948740 @default.
- W123212437 cites W2142634942 @default.
- W123212437 hasPublicationYear "2004" @default.
- W123212437 type Work @default.
- W123212437 sameAs 123212437 @default.
- W123212437 citedByCount "5" @default.
- W123212437 crossrefType "book" @default.
- W123212437 hasAuthorship W123212437A5012450539 @default.
- W123212437 hasAuthorship W123212437A5051658526 @default.
- W123212437 hasConcept C104317684 @default.
- W123212437 hasConcept C114289077 @default.
- W123212437 hasConcept C14036430 @default.
- W123212437 hasConcept C141231307 @default.
- W123212437 hasConcept C150194340 @default.
- W123212437 hasConcept C154945302 @default.
- W123212437 hasConcept C189206191 @default.
- W123212437 hasConcept C201797286 @default.
- W123212437 hasConcept C41008148 @default.
- W123212437 hasConcept C49937458 @default.
- W123212437 hasConcept C54355233 @default.
- W123212437 hasConcept C67339327 @default.
- W123212437 hasConcept C70721500 @default.
- W123212437 hasConcept C86803240 @default.
- W123212437 hasConceptScore W123212437C104317684 @default.
- W123212437 hasConceptScore W123212437C114289077 @default.
- W123212437 hasConceptScore W123212437C14036430 @default.
- W123212437 hasConceptScore W123212437C141231307 @default.
- W123212437 hasConceptScore W123212437C150194340 @default.
- W123212437 hasConceptScore W123212437C154945302 @default.
- W123212437 hasConceptScore W123212437C189206191 @default.
- W123212437 hasConceptScore W123212437C201797286 @default.
- W123212437 hasConceptScore W123212437C41008148 @default.
- W123212437 hasConceptScore W123212437C49937458 @default.
- W123212437 hasConceptScore W123212437C54355233 @default.
- W123212437 hasConceptScore W123212437C67339327 @default.
- W123212437 hasConceptScore W123212437C70721500 @default.
- W123212437 hasConceptScore W123212437C86803240 @default.
- W123212437 hasLocation W1232124371 @default.
- W123212437 hasOpenAccess W123212437 @default.
- W123212437 hasPrimaryLocation W1232124371 @default.
- W123212437 hasRelatedWork W2018740085 @default.
- W123212437 hasRelatedWork W2042879528 @default.
- W123212437 hasRelatedWork W2058221907 @default.
- W123212437 hasRelatedWork W2060780143 @default.
- W123212437 hasRelatedWork W2103453943 @default.
- W123212437 hasRelatedWork W2133572196 @default.
- W123212437 hasRelatedWork W2151912191 @default.
- W123212437 hasRelatedWork W2161622353 @default.
- W123212437 hasRelatedWork W2187672639 @default.
- W123212437 hasRelatedWork W2288964075 @default.
- W123212437 hasRelatedWork W2410978489 @default.
- W123212437 hasRelatedWork W2538590841 @default.
- W123212437 hasRelatedWork W2576589867 @default.
- W123212437 hasRelatedWork W2611370172 @default.
- W123212437 hasRelatedWork W2799346978 @default.
- W123212437 hasRelatedWork W2903809219 @default.
- W123212437 hasRelatedWork W2954218722 @default.
- W123212437 hasRelatedWork W3012879429 @default.
- W123212437 hasRelatedWork W3162877582 @default.
- W123212437 hasRelatedWork W80720732 @default.
- W123212437 isParatext "false" @default.
- W123212437 isRetracted "false" @default.
- W123212437 magId "123212437" @default.
- W123212437 workType "book" @default.