Matches in SemOpenAlex for { <https://semopenalex.org/work/W123289710> ?p ?o ?g. }
- W123289710 endingPage "31" @default.
- W123289710 startingPage "1" @default.
- W123289710 abstract "Statistical genetic analysis of quantitative traits in large pedigrees is a formidable computational task due to the necessity of taking the nonindependence among relatives into account. With the growing awareness that rare sequence variants may be important in human quantitative variation, heritability and association study designs involving large pedigrees will increase in frequency due to the greater chance of observing multiple copies of rare variants among related individuals. Therefore, it is important to have statistical genetic test procedures that utilize all available information for extracting evidence regarding genetic association. Optimal testing for marker/phenotype association involves the exact calculation of the likelihood ratio statistic which requires the repeated inversion of potentially large matrices. In a whole genome sequence association context, such computation may be prohibitive. Toward this end, we have developed a rapid and efficient eigensimplification of the likelihood that makes analysis of family data commensurate with the analysis of a comparable sample of unrelated individuals. Our theoretical results which are based on a spectral representation of the likelihood yield simple exact expressions for the expected likelihood ratio test statistic (ELRT) for pedigrees of arbitrary size and complexity. For heritability, the ELRT is−∑ln1+h2λgi−1,where h2 and λgi are, respectively, the heritability and eigenvalues of the pedigree-derived genetic relationship kernel (GRK). For association analysis of sequence variants, the ELRT is given byELRThq2>0:unrelateds−ELRTht2>0:pedigrees−ELRThr2>0:pedigrees,where ht2, hq2, and hr2 are the total, quantitative trait nucleotide, and residual heritabilities, respectively. Using these results, fast and accurate analytical power analyses are possible, eliminating the need for computer simulation. Additional benefits of eigensimplification include a simple method for calculation of the exact distribution of the ELRT under the null hypothesis which turns out to differ from that expected under the usual asymptotic theory. Further, when combined with the use of empirical GRKs—estimated over a large number of genetic markers—our theory reveals potential problems associated with nonpositive semidefinite kernels. These procedures are being added to our general statistical genetic computer package, SOLAR." @default.
- W123289710 created "2016-06-24" @default.
- W123289710 creator A5000992220 @default.
- W123289710 creator A5001462127 @default.
- W123289710 creator A5001935511 @default.
- W123289710 creator A5004538115 @default.
- W123289710 creator A5015603734 @default.
- W123289710 creator A5017431021 @default.
- W123289710 creator A5019772996 @default.
- W123289710 creator A5048891768 @default.
- W123289710 creator A5054933991 @default.
- W123289710 date "2013-01-01" @default.
- W123289710 modified "2023-10-12" @default.
- W123289710 title "A Kernel of Truth" @default.
- W123289710 cites W1767135237 @default.
- W123289710 cites W1855635238 @default.
- W123289710 cites W1963989728 @default.
- W123289710 cites W1967454638 @default.
- W123289710 cites W1977983964 @default.
- W123289710 cites W1979164118 @default.
- W123289710 cites W1980385952 @default.
- W123289710 cites W1988046859 @default.
- W123289710 cites W1988390118 @default.
- W123289710 cites W1988859236 @default.
- W123289710 cites W1990130013 @default.
- W123289710 cites W1990611835 @default.
- W123289710 cites W1991718164 @default.
- W123289710 cites W1995109709 @default.
- W123289710 cites W1999947197 @default.
- W123289710 cites W2000084758 @default.
- W123289710 cites W2003840802 @default.
- W123289710 cites W2003898356 @default.
- W123289710 cites W2016966976 @default.
- W123289710 cites W2018473191 @default.
- W123289710 cites W2018810989 @default.
- W123289710 cites W2033151532 @default.
- W123289710 cites W2034985579 @default.
- W123289710 cites W2036502599 @default.
- W123289710 cites W2044394153 @default.
- W123289710 cites W2046076301 @default.
- W123289710 cites W2048578647 @default.
- W123289710 cites W2051138734 @default.
- W123289710 cites W2058132579 @default.
- W123289710 cites W2062318434 @default.
- W123289710 cites W2062809207 @default.
- W123289710 cites W2063605818 @default.
- W123289710 cites W2075870737 @default.
- W123289710 cites W2080235308 @default.
- W123289710 cites W2088486634 @default.
- W123289710 cites W2094809970 @default.
- W123289710 cites W2095034968 @default.
- W123289710 cites W2096791516 @default.
- W123289710 cites W2104742476 @default.
- W123289710 cites W2105676956 @default.
- W123289710 cites W2110725774 @default.
- W123289710 cites W2112490505 @default.
- W123289710 cites W2113381731 @default.
- W123289710 cites W2114770358 @default.
- W123289710 cites W2115335486 @default.
- W123289710 cites W2127472986 @default.
- W123289710 cites W2127684760 @default.
- W123289710 cites W2130637098 @default.
- W123289710 cites W2134049753 @default.
- W123289710 cites W2135277953 @default.
- W123289710 cites W2135592973 @default.
- W123289710 cites W2138461522 @default.
- W123289710 cites W2155496693 @default.
- W123289710 cites W2162852088 @default.
- W123289710 cites W2163953557 @default.
- W123289710 cites W2166027220 @default.
- W123289710 cites W2170204770 @default.
- W123289710 cites W2171717223 @default.
- W123289710 cites W2303043072 @default.
- W123289710 cites W2326847038 @default.
- W123289710 cites W2331807267 @default.
- W123289710 cites W2332468989 @default.
- W123289710 cites W2473850659 @default.
- W123289710 cites W4231990549 @default.
- W123289710 cites W4247582860 @default.
- W123289710 cites W4249369821 @default.
- W123289710 doi "https://doi.org/10.1016/b978-0-12-407677-8.00001-4" @default.
- W123289710 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4019427" @default.
- W123289710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23419715" @default.
- W123289710 hasPublicationYear "2013" @default.
- W123289710 type Work @default.
- W123289710 sameAs 123289710 @default.
- W123289710 citedByCount "52" @default.
- W123289710 countsByYear W1232897102013 @default.
- W123289710 countsByYear W1232897102014 @default.
- W123289710 countsByYear W1232897102015 @default.
- W123289710 countsByYear W1232897102016 @default.
- W123289710 countsByYear W1232897102017 @default.
- W123289710 countsByYear W1232897102018 @default.
- W123289710 countsByYear W1232897102019 @default.
- W123289710 countsByYear W1232897102020 @default.
- W123289710 countsByYear W1232897102021 @default.
- W123289710 countsByYear W1232897102022 @default.
- W123289710 countsByYear W1232897102023 @default.