Matches in SemOpenAlex for { <https://semopenalex.org/work/W123418429> ?p ?o ?g. }
- W123418429 abstract "The purpose of this work is to introduce and experimentally validate a framework, based on statistical machine learning, for handling a broad range of problems in information retrieval (IR). Probably the most important single component of this framework is a parametric statistical model of word relatedness. A longstanding problem in IR has been to develop a mathematically principled model for document processing which acknowledges that one sequence of words may be closely related to another even if the pair have few (or no) words in common. Until now, the word-relatedness problem has typically been addressed with techniques like automatic query expansion [75], an often successful though ad hoc technique which artificially injects new, related words into a document for the purpose of ensuring that related documents have some lexical overlap. In the past few years have emerged a number of novel probabilistic approaches to information processing—including the language modeling approach to document ranking suggested first by Ponte and Croft [67], the non-extractive summarization work of Mittal and Witbrock [87], and the Hidden Markov Model-based ranking of Miller et al. [61]. This thesis advances that body of work by proposing a principled, general probabilistic framework which naturally accounts for word-relatedness issues, using techniques from statistical machine learning such as the Expectation-Maximization (EM) algorithm [24]. Applying this new framework to the problem of ranking documents by relevancy to a query, for instance, we discover a model that contains a version of the Ponte and Miller models as a special case, but surpasses these in its ability to recognize the relevance of a document to a query even when the two have minimal lexical overlap. (Abstract shortened by UMI.)" @default.
- W123418429 created "2016-06-24" @default.
- W123418429 creator A5060219657 @default.
- W123418429 creator A5060963011 @default.
- W123418429 date "2001-01-01" @default.
- W123418429 modified "2023-09-26" @default.
- W123418429 title "Statistical machine learning for information retrieval" @default.
- W123418429 cites W1459298 @default.
- W123418429 cites W1508165687 @default.
- W123418429 cites W1520252399 @default.
- W123418429 cites W1538556863 @default.
- W123418429 cites W1546195864 @default.
- W123418429 cites W1549285799 @default.
- W123418429 cites W1553385386 @default.
- W123418429 cites W1575431606 @default.
- W123418429 cites W1590275315 @default.
- W123418429 cites W1597533204 @default.
- W123418429 cites W1598266570 @default.
- W123418429 cites W1632114991 @default.
- W123418429 cites W1773803948 @default.
- W123418429 cites W1885411690 @default.
- W123418429 cites W1924403233 @default.
- W123418429 cites W1966542308 @default.
- W123418429 cites W1966812932 @default.
- W123418429 cites W1974339500 @default.
- W123418429 cites W1976241232 @default.
- W123418429 cites W1978394996 @default.
- W123418429 cites W1979459060 @default.
- W123418429 cites W1995875735 @default.
- W123418429 cites W2006969979 @default.
- W123418429 cites W2009570821 @default.
- W123418429 cites W2012898849 @default.
- W123418429 cites W2024181699 @default.
- W123418429 cites W2030750105 @default.
- W123418429 cites W2034771957 @default.
- W123418429 cites W2039240651 @default.
- W123418429 cites W2049633694 @default.
- W123418429 cites W2053742104 @default.
- W123418429 cites W2062270497 @default.
- W123418429 cites W2063481345 @default.
- W123418429 cites W2065240770 @default.
- W123418429 cites W2082092506 @default.
- W123418429 cites W2082729696 @default.
- W123418429 cites W2089185211 @default.
- W123418429 cites W2093390569 @default.
- W123418429 cites W2095368471 @default.
- W123418429 cites W2096175520 @default.
- W123418429 cites W2097333193 @default.
- W123418429 cites W2099111195 @default.
- W123418429 cites W2101390659 @default.
- W123418429 cites W2109923210 @default.
- W123418429 cites W2115541970 @default.
- W123418429 cites W2117257534 @default.
- W123418429 cites W2118119027 @default.
- W123418429 cites W2123838014 @default.
- W123418429 cites W2134237567 @default.
- W123418429 cites W2135258175 @default.
- W123418429 cites W2137591918 @default.
- W123418429 cites W2141899961 @default.
- W123418429 cites W2142384583 @default.
- W123418429 cites W2145080939 @default.
- W123418429 cites W2164547069 @default.
- W123418429 cites W2170950338 @default.
- W123418429 cites W219285816 @default.
- W123418429 cites W2333269907 @default.
- W123418429 cites W2422872931 @default.
- W123418429 cites W2799002609 @default.
- W123418429 cites W2801179766 @default.
- W123418429 cites W2947000318 @default.
- W123418429 cites W2949237929 @default.
- W123418429 cites W3042136801 @default.
- W123418429 cites W3088257432 @default.
- W123418429 cites W3088311774 @default.
- W123418429 cites W58766574 @default.
- W123418429 cites W67698546 @default.
- W123418429 hasPublicationYear "2001" @default.
- W123418429 type Work @default.
- W123418429 sameAs 123418429 @default.
- W123418429 citedByCount "11" @default.
- W123418429 countsByYear W1234184292014 @default.
- W123418429 countsByYear W1234184292016 @default.
- W123418429 countsByYear W1234184292018 @default.
- W123418429 countsByYear W1234184292021 @default.
- W123418429 crossrefType "journal-article" @default.
- W123418429 hasAuthorship W123418429A5060219657 @default.
- W123418429 hasAuthorship W123418429A5060963011 @default.
- W123418429 hasConcept C114289077 @default.
- W123418429 hasConcept C119857082 @default.
- W123418429 hasConcept C137293760 @default.
- W123418429 hasConcept C138885662 @default.
- W123418429 hasConcept C154945302 @default.
- W123418429 hasConcept C170858558 @default.
- W123418429 hasConcept C189430467 @default.
- W123418429 hasConcept C204321447 @default.
- W123418429 hasConcept C23123220 @default.
- W123418429 hasConcept C41008148 @default.
- W123418429 hasConcept C41895202 @default.
- W123418429 hasConcept C49937458 @default.
- W123418429 hasConcept C90805587 @default.
- W123418429 hasConceptScore W123418429C114289077 @default.