Matches in SemOpenAlex for { <https://semopenalex.org/work/W123418605> ?p ?o ?g. }
- W123418605 abstract "One of the most interesting problems in string theory is to understand how the background space-time on which the string propagates arises in a self-consistent way. For open strings, there are two main approaches to this problem, boundary string field theory (BSFT) and cubic string field theory (CSFT). In the first part of this Thesis we deal with the construction of the spacetime tachyon effective action in BSFT. Renormalization fixed points are solutions of classical equations of motion and should be viewed as solutions of classical string field theory. We have constructed the Witten-Shatashvili (WS) space-time action S and shown that some solitonic solutions are lower dimensional D-branes for which the finite value of S provides a quite accurate prediction of the D-brane tension. We have derived the explicit relation between the CSFT and WS action as a field redefinition which is nonsingular on-shell only when the normalization factor in the WS action coincides with the tension of the D25-brane, in agreement with the conjectures involving tachyon condensation. We have also found a time-dependent solution of CSFT whose evolution is driven by a diffusion equation that makes the equations of motion local with respect to the time variable. The analysis here proposed has attracted a good deal of attention for its potential cosmological applications. The profile can be expressed in terms of a series in powers of exponentials of the time coordinate, and gives evidence of a well-defined but wildly oscillatory behavior. The tachyon rolls well past the minimum of the potential, then turns around and begins to oscillate with ever increasing amplitude. Furthermore, we have derived an analytic series solution of the elliptic equations providing the 4-tachyon off-shell amplitude. From such a solution we computed the exact coefficient of the quartic effective action relevant for time-dependent solutions and we derived the exact coefficient of the quartic tachyon coupling. We studied the rolling tachyon solution expressed as a series of exponentials of the time coordinate both using level-truncation computations and the exact 4-tachyon amplitude. The results for the level-truncated coefficients converge to those derived using the exact string amplitude and confirm the wild oscillatory behavior. In the second part of the Thesis we consider the extension of the gauge/gravity correspondence to systems with reduced and hence more realistic supersymmetry, which is one of the main steps towards a non-perturbative description of confining, QCD-like, gauge theories in terms of gravitational backgrounds. If string theory on AdS5xS5 is integrable, the theory on simple orbifolds of that space would also be expected to be integrable. We have computed the planar finite size corrections to the spectrum of the dilatation operator acting on states of a certain limit of conformal N = 2 quiver gauge field theory which is a ZM-orbifold of N = 4 SYM theory. We matched the result to the string dual, IIB superstrings on a pp-wave background with a periodically identified null coordinate. Up to two loops, we have shown that the computations done by using an effective Hamiltonian technique and a twisted Bethe Ansatz agree with each other and also agree with a computation of the analogous quantity in string theory. Our results are consistent with integrability of the N = 2 theory." @default.
- W123418605 created "2016-06-24" @default.
- W123418605 creator A5016477616 @default.
- W123418605 date "2006-12-01" @default.
- W123418605 modified "2023-09-27" @default.
- W123418605 title "Non trivial string backgrounds: Tachyons in String Field Theory and Plane-waves in DLCQ Strings" @default.
- W123418605 cites W1529238097 @default.
- W123418605 cites W1566025287 @default.
- W123418605 cites W1661227070 @default.
- W123418605 cites W1767729965 @default.
- W123418605 cites W1793463380 @default.
- W123418605 cites W1889142700 @default.
- W123418605 cites W1893761982 @default.
- W123418605 cites W1931244805 @default.
- W123418605 cites W1963634345 @default.
- W123418605 cites W1966251533 @default.
- W123418605 cites W1971382307 @default.
- W123418605 cites W1973923803 @default.
- W123418605 cites W1976750092 @default.
- W123418605 cites W1976794065 @default.
- W123418605 cites W1977202501 @default.
- W123418605 cites W1983009627 @default.
- W123418605 cites W1984327218 @default.
- W123418605 cites W1989087849 @default.
- W123418605 cites W1990028197 @default.
- W123418605 cites W1990169979 @default.
- W123418605 cites W1994072461 @default.
- W123418605 cites W1998267513 @default.
- W123418605 cites W1998520174 @default.
- W123418605 cites W2003493726 @default.
- W123418605 cites W2008851139 @default.
- W123418605 cites W2012993769 @default.
- W123418605 cites W2016145873 @default.
- W123418605 cites W2017026621 @default.
- W123418605 cites W2027614172 @default.
- W123418605 cites W2035762350 @default.
- W123418605 cites W2036739558 @default.
- W123418605 cites W2037317411 @default.
- W123418605 cites W2038561675 @default.
- W123418605 cites W2038974983 @default.
- W123418605 cites W2041478350 @default.
- W123418605 cites W2041698569 @default.
- W123418605 cites W2043507979 @default.
- W123418605 cites W2044987357 @default.
- W123418605 cites W2048584842 @default.
- W123418605 cites W2051168211 @default.
- W123418605 cites W2053805102 @default.
- W123418605 cites W2056400663 @default.
- W123418605 cites W2057305625 @default.
- W123418605 cites W2070556236 @default.
- W123418605 cites W2071130313 @default.
- W123418605 cites W2071797599 @default.
- W123418605 cites W2081241273 @default.
- W123418605 cites W2081913140 @default.
- W123418605 cites W2082212342 @default.
- W123418605 cites W2084035031 @default.
- W123418605 cites W2086212867 @default.
- W123418605 cites W2088673235 @default.
- W123418605 cites W2089197993 @default.
- W123418605 cites W2097616202 @default.
- W123418605 cites W2099104715 @default.
- W123418605 cites W2100966384 @default.
- W123418605 cites W2102567115 @default.
- W123418605 cites W2103877604 @default.
- W123418605 cites W2106691793 @default.
- W123418605 cites W2116865176 @default.
- W123418605 cites W2124590498 @default.
- W123418605 cites W2126517327 @default.
- W123418605 cites W2128012089 @default.
- W123418605 cites W2139563615 @default.
- W123418605 cites W2140712980 @default.
- W123418605 cites W2143827369 @default.
- W123418605 cites W2150914962 @default.
- W123418605 cites W2157005274 @default.
- W123418605 cites W2161995998 @default.
- W123418605 cites W2162532099 @default.
- W123418605 cites W2170147812 @default.
- W123418605 cites W2963350420 @default.
- W123418605 cites W2967116790 @default.
- W123418605 cites W3037344629 @default.
- W123418605 cites W3037804395 @default.
- W123418605 cites W3037997738 @default.
- W123418605 cites W3098492285 @default.
- W123418605 cites W3100163516 @default.
- W123418605 cites W3100704761 @default.
- W123418605 cites W3101746203 @default.
- W123418605 cites W3101940945 @default.
- W123418605 cites W3102675861 @default.
- W123418605 cites W3103232545 @default.
- W123418605 cites W3105106010 @default.
- W123418605 cites W3124318640 @default.
- W123418605 cites W406349391 @default.
- W123418605 cites W774460638 @default.
- W123418605 cites W162846400 @default.
- W123418605 hasPublicationYear "2006" @default.
- W123418605 type Work @default.
- W123418605 sameAs 123418605 @default.
- W123418605 citedByCount "0" @default.
- W123418605 crossrefType "dissertation" @default.
- W123418605 hasAuthorship W123418605A5016477616 @default.