Matches in SemOpenAlex for { <https://semopenalex.org/work/W12439901> ?p ?o ?g. }
- W12439901 abstract "Engineered materials, such as new composites, electromagnetic bandgap and periodic structures have attracted considerable interest in recent years due to their remarkable and unique electromagnetic behavior. As a result, an extensive literature on the theory and application of artificially modified materials exists. Examples include photonic crystals (regular, degenerate or magnetic) illustrating that extraordinary gain and high transmittance can be achieved at specific frequencies. Of importance is that recent investigations of material loading demonstrate that substantial improvements in antenna performance (smaller size, larger bandwidth, higher gain etc.) can be attained by loading bulk materials such as ferrites or by simply grading the material subject to specific design objectives. Multi-tone ceramic materials have also been used for miniaturization and pliable polymers offer new possibilities in three dimensional antenna design and multilayer printed structures, including 3D electronics. However, as the variety of examples in the literature shows, the perfect combination of materials is unique and extremely difficult to determine without optimization. In addition, existing artificial dielectrics are mostly based on intuitive studies, i.e. a formal design framework to predict the exact spatial combination of dielectrics, magnetics and conductors does not exist. In the first part of this thesis, an inverse design framework integrating FE based analysis tool (COMSOL MULTIPHYSICS-PDE Coefficient Module) with an optimization technique (MATLAB-Genetic Algorithm and Direct Search toolbox) suitable for designing the microstructure of artificial magneto-dielectrics from isotropic material phases is proposed. Homogenizing Maxwell's Equations (MEQ) in order to estimate the effective material parameters of the desired composite made of periodic microstructures is the initial task of the framework. The FE analysis tool is used to evaluate intermediate fields at the micro-scale level of a unit cell that is integrated with the homogenized MEQ's in order to estimate the macro-scale effective constitutive parameters of the overall bulk periodic structure. Simulation of the periodic structure is an extremely challenging task due to the mesh at micro-level (inclusions much smaller than the periodic cell dimension) that spans over the entire bulk structure turning the computational problem into a very intensive one. Therefore, the proposed framework based on the solution of homogenized MEQ's via the micro-macro approach, allows topology design capabilities of microstructures with desired properties. The goal is to achieve predefined material constitutive parameters via artificial electromagnetic substrates. Physical material bounds on the attainable properties are studied to avoid infeasible effective parameter requirements via available multi-constituents. The proposed framework is applied on examples such as microstructure layers of non-reciprocal magnetic photonic crystals. Results show that the homogenization technique along with topology optimization is able to design non-intuitive material compositions with desired electromagnetic properties. In the second part of the thesis, approximation techniques to speed-up large scale topology optimization studies of devices with complex frequency responses are investigated. Miniaturization of microstrip antennas via topology optimization of both the conductor and material substrate via multi-tone ceramic shades is a typical example treated here. Long computational times required for both the electromagnetic analysis over a frequency range and the need for a heuristic based optimization tool to locate the global minima for complex devices present themselves as two important bottlenecks for practical design studies. In this thesis, two new techniques for speeding up the optimization process by reducing the number of frequency calls needed to accurately predict a multi-resonance type response of a candidate design are proposed. The proposed techniques employ adaptive sampling methods along with novel rational function interpolations. The first technique relies on a heuristic based rational interpolation using Bayes' theory and rational functions. Second, a rational function interpolation employing a new adaptive path based on Stoer-Bulirsch algorithm is used. Both techniques prove to efficiently predict resonances and significantly reduce the computational time by at least three folds." @default.
- W12439901 created "2016-06-24" @default.
- W12439901 creator A5017282137 @default.
- W12439901 date "2009-01-01" @default.
- W12439901 modified "2023-09-27" @default.
- W12439901 title "Microstructure design of magneto-dielectric materials via topology optimization" @default.
- W12439901 cites W171939390 @default.
- W12439901 cites W1723188163 @default.
- W12439901 cites W1968095528 @default.
- W12439901 cites W1971947347 @default.
- W12439901 cites W1972722714 @default.
- W12439901 cites W1973282871 @default.
- W12439901 cites W1975911903 @default.
- W12439901 cites W1977282511 @default.
- W12439901 cites W1979780362 @default.
- W12439901 cites W1981245623 @default.
- W12439901 cites W1982130689 @default.
- W12439901 cites W1984239404 @default.
- W12439901 cites W1986654860 @default.
- W12439901 cites W1994947738 @default.
- W12439901 cites W1995451737 @default.
- W12439901 cites W1997162087 @default.
- W12439901 cites W2008340325 @default.
- W12439901 cites W2012018306 @default.
- W12439901 cites W2013470179 @default.
- W12439901 cites W2014618685 @default.
- W12439901 cites W2015917971 @default.
- W12439901 cites W2015925618 @default.
- W12439901 cites W2016859302 @default.
- W12439901 cites W2017007126 @default.
- W12439901 cites W2021669684 @default.
- W12439901 cites W2027652501 @default.
- W12439901 cites W2028345182 @default.
- W12439901 cites W2029414601 @default.
- W12439901 cites W2034087165 @default.
- W12439901 cites W2040517465 @default.
- W12439901 cites W2044933489 @default.
- W12439901 cites W2047741066 @default.
- W12439901 cites W2051555830 @default.
- W12439901 cites W2069697210 @default.
- W12439901 cites W2078045457 @default.
- W12439901 cites W2091014050 @default.
- W12439901 cites W2096260420 @default.
- W12439901 cites W2096484170 @default.
- W12439901 cites W2096789448 @default.
- W12439901 cites W2099207244 @default.
- W12439901 cites W2101862430 @default.
- W12439901 cites W2102434152 @default.
- W12439901 cites W2102905064 @default.
- W12439901 cites W2103968071 @default.
- W12439901 cites W2106406025 @default.
- W12439901 cites W2109844419 @default.
- W12439901 cites W2110966478 @default.
- W12439901 cites W2111943187 @default.
- W12439901 cites W2113042424 @default.
- W12439901 cites W2113120530 @default.
- W12439901 cites W2114668842 @default.
- W12439901 cites W2118555989 @default.
- W12439901 cites W2120065890 @default.
- W12439901 cites W2122765624 @default.
- W12439901 cites W2126692684 @default.
- W12439901 cites W2127811372 @default.
- W12439901 cites W2130261750 @default.
- W12439901 cites W2132470622 @default.
- W12439901 cites W2132503113 @default.
- W12439901 cites W2132782245 @default.
- W12439901 cites W2134444364 @default.
- W12439901 cites W2135382407 @default.
- W12439901 cites W2140190241 @default.
- W12439901 cites W2141406702 @default.
- W12439901 cites W2141621517 @default.
- W12439901 cites W2142542983 @default.
- W12439901 cites W2148664422 @default.
- W12439901 cites W2150498692 @default.
- W12439901 cites W2150921290 @default.
- W12439901 cites W2151238122 @default.
- W12439901 cites W2151351567 @default.
- W12439901 cites W2152045329 @default.
- W12439901 cites W2153922704 @default.
- W12439901 cites W2156923645 @default.
- W12439901 cites W2156956713 @default.
- W12439901 cites W2158862486 @default.
- W12439901 cites W2159858882 @default.
- W12439901 cites W2163310221 @default.
- W12439901 cites W2163476975 @default.
- W12439901 cites W2166321104 @default.
- W12439901 cites W2169256361 @default.
- W12439901 cites W2540539267 @default.
- W12439901 cites W3099588381 @default.
- W12439901 cites W58981949 @default.
- W12439901 hasPublicationYear "2009" @default.
- W12439901 type Work @default.
- W12439901 sameAs 12439901 @default.
- W12439901 citedByCount "0" @default.
- W12439901 crossrefType "dissertation" @default.
- W12439901 hasAuthorship W12439901A5017282137 @default.
- W12439901 hasConcept C120665830 @default.
- W12439901 hasConcept C121332964 @default.
- W12439901 hasConcept C127413603 @default.
- W12439901 hasConcept C133386390 @default.