Matches in SemOpenAlex for { <https://semopenalex.org/work/W124493206> ?p ?o ?g. }
- W124493206 endingPage "576" @default.
- W124493206 startingPage "535" @default.
- W124493206 abstract "We consider a class of parabolic systems and equations in divergence form modeled by the evolutionary $p$-Laplacean system $$ u_t - operatorname{div} (|Du|^{p-2}Du)=V(x,t) , $$ and provide $L^infty$-bounds for the spatial gradient of solutions $Du$ via nonlinear potentials of the right hand side datum $V$. Such estimates are related to those obtained by Kilpeläinen and Malý [22] in the elliptic case. In turn, the potential estimates found imply optimal conditions for the boundedness of $Du$ in terms of borderline rearrangement invariant function spaces of Lorentz type. In particular, we prove that if $Vin L(n+2,1)$ then $Du in L^infty_{mathrm{loc}}$, where $n$ is the space dimension, and this gives the borderline case of a result of DiBenedetto [5]; a significant point is that the condition $V in L(n+2,1)$ is independent of $p$. Moreover, we find explicit forms of local a priori estimates extending those from [5] valid for the homogeneous case $V equiv 0$." @default.
- W124493206 created "2016-06-24" @default.
- W124493206 creator A5055486184 @default.
- W124493206 creator A5089215657 @default.
- W124493206 date "2012-04-22" @default.
- W124493206 modified "2023-10-10" @default.
- W124493206 title "Potential estimates and gradient boundedness for nonlinear parabolic systems" @default.
- W124493206 cites W1030807503 @default.
- W124493206 cites W135878006 @default.
- W124493206 cites W1482910789 @default.
- W124493206 cites W1489222793 @default.
- W124493206 cites W1504810697 @default.
- W124493206 cites W1537639429 @default.
- W124493206 cites W1544375930 @default.
- W124493206 cites W1559907478 @default.
- W124493206 cites W1964968127 @default.
- W124493206 cites W1981643669 @default.
- W124493206 cites W1996578703 @default.
- W124493206 cites W1997146502 @default.
- W124493206 cites W2001993056 @default.
- W124493206 cites W2005315176 @default.
- W124493206 cites W2008738264 @default.
- W124493206 cites W2012063459 @default.
- W124493206 cites W2016585868 @default.
- W124493206 cites W2017598955 @default.
- W124493206 cites W2018761835 @default.
- W124493206 cites W2021017989 @default.
- W124493206 cites W2025854194 @default.
- W124493206 cites W2035163028 @default.
- W124493206 cites W2041416163 @default.
- W124493206 cites W2050726222 @default.
- W124493206 cites W2052784529 @default.
- W124493206 cites W2064043277 @default.
- W124493206 cites W2068228997 @default.
- W124493206 cites W2069330133 @default.
- W124493206 cites W2113505318 @default.
- W124493206 cites W2127355849 @default.
- W124493206 cites W2138489027 @default.
- W124493206 cites W3091814460 @default.
- W124493206 cites W644710670 @default.
- W124493206 cites W67004641 @default.
- W124493206 cites W97097846 @default.
- W124493206 doi "https://doi.org/10.4171/rmi/684" @default.
- W124493206 hasPublicationYear "2012" @default.
- W124493206 type Work @default.
- W124493206 sameAs 124493206 @default.
- W124493206 citedByCount "31" @default.
- W124493206 countsByYear W1244932062013 @default.
- W124493206 countsByYear W1244932062014 @default.
- W124493206 countsByYear W1244932062015 @default.
- W124493206 countsByYear W1244932062016 @default.
- W124493206 countsByYear W1244932062017 @default.
- W124493206 countsByYear W1244932062018 @default.
- W124493206 countsByYear W1244932062019 @default.
- W124493206 countsByYear W1244932062020 @default.
- W124493206 countsByYear W1244932062021 @default.
- W124493206 countsByYear W1244932062022 @default.
- W124493206 countsByYear W1244932062023 @default.
- W124493206 crossrefType "journal-article" @default.
- W124493206 hasAuthorship W124493206A5055486184 @default.
- W124493206 hasAuthorship W124493206A5089215657 @default.
- W124493206 hasBestOaLocation W1244932061 @default.
- W124493206 hasConcept C114614502 @default.
- W124493206 hasConcept C121332964 @default.
- W124493206 hasConcept C134306372 @default.
- W124493206 hasConcept C138885662 @default.
- W124493206 hasConcept C14036430 @default.
- W124493206 hasConcept C158622935 @default.
- W124493206 hasConcept C18903297 @default.
- W124493206 hasConcept C190470478 @default.
- W124493206 hasConcept C202444582 @default.
- W124493206 hasConcept C207390915 @default.
- W124493206 hasConcept C2776551381 @default.
- W124493206 hasConcept C2777299769 @default.
- W124493206 hasConcept C2778572836 @default.
- W124493206 hasConcept C33676613 @default.
- W124493206 hasConcept C33923547 @default.
- W124493206 hasConcept C37914503 @default.
- W124493206 hasConcept C41895202 @default.
- W124493206 hasConcept C5667645 @default.
- W124493206 hasConcept C62520636 @default.
- W124493206 hasConcept C66882249 @default.
- W124493206 hasConcept C74650414 @default.
- W124493206 hasConcept C78458016 @default.
- W124493206 hasConcept C86803240 @default.
- W124493206 hasConceptScore W124493206C114614502 @default.
- W124493206 hasConceptScore W124493206C121332964 @default.
- W124493206 hasConceptScore W124493206C134306372 @default.
- W124493206 hasConceptScore W124493206C138885662 @default.
- W124493206 hasConceptScore W124493206C14036430 @default.
- W124493206 hasConceptScore W124493206C158622935 @default.
- W124493206 hasConceptScore W124493206C18903297 @default.
- W124493206 hasConceptScore W124493206C190470478 @default.
- W124493206 hasConceptScore W124493206C202444582 @default.
- W124493206 hasConceptScore W124493206C207390915 @default.
- W124493206 hasConceptScore W124493206C2776551381 @default.
- W124493206 hasConceptScore W124493206C2777299769 @default.
- W124493206 hasConceptScore W124493206C2778572836 @default.