Matches in SemOpenAlex for { <https://semopenalex.org/work/W1245644413> ?p ?o ?g. }
- W1245644413 endingPage "541" @default.
- W1245644413 startingPage "530" @default.
- W1245644413 abstract "A novel identification method of neuro-fuzzy based MIMO Hammerstein model by using the correlation analysis method is presented in this paper. A special test signal that contains independent separable signals and uniformly random multi-step signal is adopted to identify the MIMO Hammerstein process, resulting in the identification problem of the linear model separated from that of nonlinear part. As a result, the identification of the dynamic linear element can be separated from the static nonlinear element without any redundant adjustable parameters. Moreover, it can circumvent the problem of initialization and convergence of the model parameters discussed in the existing iterative algorithms used for identification of MIMO Hammerstein model. Examples are used to illustrate the effectiveness of the proposed method." @default.
- W1245644413 created "2016-06-24" @default.
- W1245644413 creator A5021327403 @default.
- W1245644413 creator A5041585387 @default.
- W1245644413 creator A5050844214 @default.
- W1245644413 date "2016-01-01" @default.
- W1245644413 modified "2023-09-26" @default.
- W1245644413 title "The identification of neuro-fuzzy based MIMO Hammerstein model with separable input signals" @default.
- W1245644413 cites W1963537475 @default.
- W1245644413 cites W1965135615 @default.
- W1245644413 cites W1974508623 @default.
- W1245644413 cites W1980759970 @default.
- W1245644413 cites W1981142864 @default.
- W1245644413 cites W1988864101 @default.
- W1245644413 cites W1990119353 @default.
- W1245644413 cites W1992716992 @default.
- W1245644413 cites W1994921381 @default.
- W1245644413 cites W2008725793 @default.
- W1245644413 cites W2015414933 @default.
- W1245644413 cites W2020599692 @default.
- W1245644413 cites W2024611842 @default.
- W1245644413 cites W2027040265 @default.
- W1245644413 cites W2029536303 @default.
- W1245644413 cites W2051051164 @default.
- W1245644413 cites W2057982239 @default.
- W1245644413 cites W2063620182 @default.
- W1245644413 cites W2068045302 @default.
- W1245644413 cites W2071495746 @default.
- W1245644413 cites W2074659576 @default.
- W1245644413 cites W2076109268 @default.
- W1245644413 cites W2085907230 @default.
- W1245644413 cites W2086248552 @default.
- W1245644413 cites W2091207064 @default.
- W1245644413 cites W2091590655 @default.
- W1245644413 cites W2108861758 @default.
- W1245644413 cites W2115030441 @default.
- W1245644413 cites W2119016079 @default.
- W1245644413 cites W2132921044 @default.
- W1245644413 cites W2144146900 @default.
- W1245644413 cites W2146207066 @default.
- W1245644413 cites W2158205913 @default.
- W1245644413 doi "https://doi.org/10.1016/j.neucom.2015.06.089" @default.
- W1245644413 hasPublicationYear "2016" @default.
- W1245644413 type Work @default.
- W1245644413 sameAs 1245644413 @default.
- W1245644413 citedByCount "17" @default.
- W1245644413 countsByYear W12456444132017 @default.
- W1245644413 countsByYear W12456444132018 @default.
- W1245644413 countsByYear W12456444132019 @default.
- W1245644413 countsByYear W12456444132020 @default.
- W1245644413 countsByYear W12456444132021 @default.
- W1245644413 countsByYear W12456444132022 @default.
- W1245644413 countsByYear W12456444132023 @default.
- W1245644413 crossrefType "journal-article" @default.
- W1245644413 hasAuthorship W1245644413A5021327403 @default.
- W1245644413 hasAuthorship W1245644413A5041585387 @default.
- W1245644413 hasAuthorship W1245644413A5050844214 @default.
- W1245644413 hasConcept C111919701 @default.
- W1245644413 hasConcept C11413529 @default.
- W1245644413 hasConcept C114466953 @default.
- W1245644413 hasConcept C116834253 @default.
- W1245644413 hasConcept C119247159 @default.
- W1245644413 hasConcept C121332964 @default.
- W1245644413 hasConcept C124101348 @default.
- W1245644413 hasConcept C126255220 @default.
- W1245644413 hasConcept C127162648 @default.
- W1245644413 hasConcept C134306372 @default.
- W1245644413 hasConcept C154945302 @default.
- W1245644413 hasConcept C158622935 @default.
- W1245644413 hasConcept C162324750 @default.
- W1245644413 hasConcept C199360897 @default.
- W1245644413 hasConcept C207987634 @default.
- W1245644413 hasConcept C2775924081 @default.
- W1245644413 hasConcept C2777303404 @default.
- W1245644413 hasConcept C2779843651 @default.
- W1245644413 hasConcept C2780009758 @default.
- W1245644413 hasConcept C2983447341 @default.
- W1245644413 hasConcept C31258907 @default.
- W1245644413 hasConcept C33923547 @default.
- W1245644413 hasConcept C41008148 @default.
- W1245644413 hasConcept C47446073 @default.
- W1245644413 hasConcept C50522688 @default.
- W1245644413 hasConcept C58166 @default.
- W1245644413 hasConcept C59822182 @default.
- W1245644413 hasConcept C62520636 @default.
- W1245644413 hasConcept C70710897 @default.
- W1245644413 hasConcept C79610928 @default.
- W1245644413 hasConcept C86803240 @default.
- W1245644413 hasConcept C98045186 @default.
- W1245644413 hasConceptScore W1245644413C111919701 @default.
- W1245644413 hasConceptScore W1245644413C11413529 @default.
- W1245644413 hasConceptScore W1245644413C114466953 @default.
- W1245644413 hasConceptScore W1245644413C116834253 @default.
- W1245644413 hasConceptScore W1245644413C119247159 @default.
- W1245644413 hasConceptScore W1245644413C121332964 @default.
- W1245644413 hasConceptScore W1245644413C124101348 @default.
- W1245644413 hasConceptScore W1245644413C126255220 @default.
- W1245644413 hasConceptScore W1245644413C127162648 @default.