Matches in SemOpenAlex for { <https://semopenalex.org/work/W124994678> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W124994678 abstract "Let X be a finite simplicial complex, connected and aspherical (for each ( i geqslant 2,pi _i left( X right) = 0 )) and ( Gamma = {pi _1}left( X right) ). Then X is a classifying space for Γ (or Eilenberg-Mac Lane K(Γ, 1) space). In particular such an X is unique up to homotopy. Note that, under these assumptions Γ is torsion free." @default.
- W124994678 created "2016-06-24" @default.
- W124994678 creator A5055098896 @default.
- W124994678 date "2002-01-01" @default.
- W124994678 modified "2023-09-25" @default.
- W124994678 title "What is the Baum-Connes Conjecture?" @default.
- W124994678 doi "https://doi.org/10.1007/978-3-0348-8187-6_2" @default.
- W124994678 hasPublicationYear "2002" @default.
- W124994678 type Work @default.
- W124994678 sameAs 124994678 @default.
- W124994678 citedByCount "5" @default.
- W124994678 countsByYear W1249946782015 @default.
- W124994678 countsByYear W1249946782019 @default.
- W124994678 countsByYear W1249946782021 @default.
- W124994678 crossrefType "book-chapter" @default.
- W124994678 hasAuthorship W124994678A5055098896 @default.
- W124994678 hasConcept C111919701 @default.
- W124994678 hasConcept C114614502 @default.
- W124994678 hasConcept C118615104 @default.
- W124994678 hasConcept C141071460 @default.
- W124994678 hasConcept C187929450 @default.
- W124994678 hasConcept C202444582 @default.
- W124994678 hasConcept C2778572836 @default.
- W124994678 hasConcept C2780990831 @default.
- W124994678 hasConcept C33923547 @default.
- W124994678 hasConcept C41008148 @default.
- W124994678 hasConcept C5961521 @default.
- W124994678 hasConcept C64694042 @default.
- W124994678 hasConcept C71924100 @default.
- W124994678 hasConcept C77461463 @default.
- W124994678 hasConceptScore W124994678C111919701 @default.
- W124994678 hasConceptScore W124994678C114614502 @default.
- W124994678 hasConceptScore W124994678C118615104 @default.
- W124994678 hasConceptScore W124994678C141071460 @default.
- W124994678 hasConceptScore W124994678C187929450 @default.
- W124994678 hasConceptScore W124994678C202444582 @default.
- W124994678 hasConceptScore W124994678C2778572836 @default.
- W124994678 hasConceptScore W124994678C2780990831 @default.
- W124994678 hasConceptScore W124994678C33923547 @default.
- W124994678 hasConceptScore W124994678C41008148 @default.
- W124994678 hasConceptScore W124994678C5961521 @default.
- W124994678 hasConceptScore W124994678C64694042 @default.
- W124994678 hasConceptScore W124994678C71924100 @default.
- W124994678 hasConceptScore W124994678C77461463 @default.
- W124994678 hasLocation W1249946781 @default.
- W124994678 hasOpenAccess W124994678 @default.
- W124994678 hasPrimaryLocation W1249946781 @default.
- W124994678 hasRelatedWork W1161722009 @default.
- W124994678 hasRelatedWork W1533912997 @default.
- W124994678 hasRelatedWork W1969799018 @default.
- W124994678 hasRelatedWork W1978245558 @default.
- W124994678 hasRelatedWork W2004968218 @default.
- W124994678 hasRelatedWork W2043417800 @default.
- W124994678 hasRelatedWork W2079238422 @default.
- W124994678 hasRelatedWork W2082335836 @default.
- W124994678 hasRelatedWork W2142808397 @default.
- W124994678 hasRelatedWork W2149055300 @default.
- W124994678 hasRelatedWork W2246149825 @default.
- W124994678 hasRelatedWork W2274861449 @default.
- W124994678 hasRelatedWork W2339998653 @default.
- W124994678 hasRelatedWork W2734632479 @default.
- W124994678 hasRelatedWork W2950927048 @default.
- W124994678 hasRelatedWork W2963486196 @default.
- W124994678 hasRelatedWork W3098165894 @default.
- W124994678 hasRelatedWork W3105440946 @default.
- W124994678 hasRelatedWork W3105658185 @default.
- W124994678 hasRelatedWork W3745026 @default.
- W124994678 isParatext "false" @default.
- W124994678 isRetracted "false" @default.
- W124994678 magId "124994678" @default.
- W124994678 workType "book-chapter" @default.