Matches in SemOpenAlex for { <https://semopenalex.org/work/W125302942> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W125302942 endingPage "187" @default.
- W125302942 startingPage "147" @default.
- W125302942 abstract "In this chapter we study the forced Korteweg-de Vries equation (fKdV) :$$ {u_{t}} + lambda {u_{x}} + 2alpha u{u_{x}} + beta {u_{{xxx}}} = f'(x), - infty < x < infty $$ where λ, α < 0 and β < 0 are constants, and f(x) is a given function (called the forcing) which is differentiate and has a compact support (i.e. it is nonzero only in a closed bounded set). This equation is an asymptotically reduced result from Euler equations of fluid motion and corresponding boundary conditions. The unknown function u(x, t) represents the first order elevation of the free surface of the fluid. The forcing function f(x) is due to the bottom topography of a fluid domain (such as a bump on the bottom of a two dimensional channel), or due to an external pressure on the free surface (such as the wind stress on the surface of an ocean). Solutions of this fKdV are characterized according to the value of λ. We will show that there exist two values of λ (λ L < 0, λ C > 0) such that (a) when λ ≥ λ C the fKdV admits at least two stationary solitary wave solutions and λ = λ C is the turning point of the bifurcation curve; (b) when λ ≤ λ L , the fKdV admits only one downstream cnoidal wave solution and λ = λ L is the cut-off point at which the cnoidal wave becomes a hydraulic fall; (c) when λ L < λ < λ C , the fKdV admits no steady state solutions and solitons are periodically generated at the site of forcing and radiated upstream. KeywordsSolitary WaveBifurcation DiagramInitial Value ProblemSolitary Wave SolutionReal ZeroThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves." @default.
- W125302942 created "2016-06-24" @default.
- W125302942 creator A5005585461 @default.
- W125302942 date "1993-01-01" @default.
- W125302942 modified "2023-09-27" @default.
- W125302942 title "Forced KdV Equation" @default.
- W125302942 cites W2035603048 @default.
- W125302942 cites W2059164217 @default.
- W125302942 cites W2085166243 @default.
- W125302942 cites W2103037171 @default.
- W125302942 cites W2105944327 @default.
- W125302942 cites W2136635993 @default.
- W125302942 cites W2140324555 @default.
- W125302942 cites W2143481314 @default.
- W125302942 cites W2144827803 @default.
- W125302942 cites W2171020250 @default.
- W125302942 cites W2177073290 @default.
- W125302942 doi "https://doi.org/10.1007/978-94-011-2102-6_6" @default.
- W125302942 hasPublicationYear "1993" @default.
- W125302942 type Work @default.
- W125302942 sameAs 125302942 @default.
- W125302942 citedByCount "1" @default.
- W125302942 countsByYear W1253029422021 @default.
- W125302942 crossrefType "book-chapter" @default.
- W125302942 hasAuthorship W125302942A5005585461 @default.
- W125302942 hasConcept C121332964 @default.
- W125302942 hasConcept C134306372 @default.
- W125302942 hasConcept C146630112 @default.
- W125302942 hasConcept C158622935 @default.
- W125302942 hasConcept C197115733 @default.
- W125302942 hasConcept C24890656 @default.
- W125302942 hasConcept C2778113609 @default.
- W125302942 hasConcept C2781291010 @default.
- W125302942 hasConcept C2781349735 @default.
- W125302942 hasConcept C3018122192 @default.
- W125302942 hasConcept C33923547 @default.
- W125302942 hasConcept C37914503 @default.
- W125302942 hasConcept C62520636 @default.
- W125302942 hasConcept C87651913 @default.
- W125302942 hasConceptScore W125302942C121332964 @default.
- W125302942 hasConceptScore W125302942C134306372 @default.
- W125302942 hasConceptScore W125302942C146630112 @default.
- W125302942 hasConceptScore W125302942C158622935 @default.
- W125302942 hasConceptScore W125302942C197115733 @default.
- W125302942 hasConceptScore W125302942C24890656 @default.
- W125302942 hasConceptScore W125302942C2778113609 @default.
- W125302942 hasConceptScore W125302942C2781291010 @default.
- W125302942 hasConceptScore W125302942C2781349735 @default.
- W125302942 hasConceptScore W125302942C3018122192 @default.
- W125302942 hasConceptScore W125302942C33923547 @default.
- W125302942 hasConceptScore W125302942C37914503 @default.
- W125302942 hasConceptScore W125302942C62520636 @default.
- W125302942 hasConceptScore W125302942C87651913 @default.
- W125302942 hasLocation W1253029421 @default.
- W125302942 hasOpenAccess W125302942 @default.
- W125302942 hasPrimaryLocation W1253029421 @default.
- W125302942 hasRelatedWork W1964002756 @default.
- W125302942 hasRelatedWork W1968574726 @default.
- W125302942 hasRelatedWork W1975040438 @default.
- W125302942 hasRelatedWork W1992770287 @default.
- W125302942 hasRelatedWork W1998670970 @default.
- W125302942 hasRelatedWork W1999420030 @default.
- W125302942 hasRelatedWork W2004911731 @default.
- W125302942 hasRelatedWork W2006702644 @default.
- W125302942 hasRelatedWork W2038095811 @default.
- W125302942 hasRelatedWork W2066529622 @default.
- W125302942 hasRelatedWork W2089342355 @default.
- W125302942 hasRelatedWork W2250529392 @default.
- W125302942 hasRelatedWork W2279412724 @default.
- W125302942 hasRelatedWork W2360562856 @default.
- W125302942 hasRelatedWork W2360804142 @default.
- W125302942 hasRelatedWork W2363745101 @default.
- W125302942 hasRelatedWork W2372077320 @default.
- W125302942 hasRelatedWork W2953310792 @default.
- W125302942 hasRelatedWork W2471340060 @default.
- W125302942 hasRelatedWork W3143649253 @default.
- W125302942 isParatext "false" @default.
- W125302942 isRetracted "false" @default.
- W125302942 magId "125302942" @default.
- W125302942 workType "book-chapter" @default.