Matches in SemOpenAlex for { <https://semopenalex.org/work/W1256248941> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W1256248941 endingPage "264" @default.
- W1256248941 startingPage "250" @default.
- W1256248941 abstract "The skyline query is a powerful tool for multi-criteria decision making. However, it may return too many skyline objects to offer any meaningful insight. In this paper, we introduce a new operator, namely, the most desirable skyline object (MDSO) query, to identify manageable size of truly interesting skyline objects. Given a multi-dimensional object set and an integer k, a MDSO query returns the most preferable k skyline objects, based on the newly defined ranking criterion that considers, for each skyline object s, the number of the objects dominated by s and their accumulated (potential) weights. We devise the ranking criterion, formalize the MDSO query, and propose three algorithms for processing MDSO queries. In addition, we extend our methods to tackle the constrained MDSO (CMDSO) query. Extensive experimental results on both real and synthetic datasets show that our presented ranking criterion is significant, and our proposed algorithms are efficient and scalable." @default.
- W1256248941 created "2016-06-24" @default.
- W1256248941 creator A5006238145 @default.
- W1256248941 creator A5010128384 @default.
- W1256248941 creator A5045067652 @default.
- W1256248941 creator A5053780153 @default.
- W1256248941 creator A5071074966 @default.
- W1256248941 date "2015-11-01" @default.
- W1256248941 modified "2023-10-08" @default.
- W1256248941 title "Efficient algorithms for finding the most desirable skyline objects" @default.
- W1256248941 cites W1508299804 @default.
- W1256248941 cites W1546365363 @default.
- W1256248941 cites W1584091389 @default.
- W1256248941 cites W19152935 @default.
- W1256248941 cites W1965404622 @default.
- W1256248941 cites W1965745537 @default.
- W1256248941 cites W1967067241 @default.
- W1256248941 cites W1972541019 @default.
- W1256248941 cites W1992299165 @default.
- W1256248941 cites W1995861221 @default.
- W1256248941 cites W2012730477 @default.
- W1256248941 cites W2041984268 @default.
- W1256248941 cites W2046557563 @default.
- W1256248941 cites W2049864887 @default.
- W1256248941 cites W2050682716 @default.
- W1256248941 cites W2053001144 @default.
- W1256248941 cites W2067092194 @default.
- W1256248941 cites W2086026231 @default.
- W1256248941 cites W2096952549 @default.
- W1256248941 cites W2101205382 @default.
- W1256248941 cites W2104322506 @default.
- W1256248941 cites W2109821166 @default.
- W1256248941 cites W2111561237 @default.
- W1256248941 cites W2113295349 @default.
- W1256248941 cites W2116258144 @default.
- W1256248941 cites W2116396741 @default.
- W1256248941 cites W2116434582 @default.
- W1256248941 cites W2121612399 @default.
- W1256248941 cites W2130696419 @default.
- W1256248941 cites W2134644026 @default.
- W1256248941 cites W2145342716 @default.
- W1256248941 cites W2146831356 @default.
- W1256248941 cites W2147035797 @default.
- W1256248941 cites W2149048528 @default.
- W1256248941 cites W2151135734 @default.
- W1256248941 cites W2153516800 @default.
- W1256248941 cites W2167723076 @default.
- W1256248941 cites W2170188482 @default.
- W1256248941 doi "https://doi.org/10.1016/j.knosys.2015.07.007" @default.
- W1256248941 hasPublicationYear "2015" @default.
- W1256248941 type Work @default.
- W1256248941 sameAs 1256248941 @default.
- W1256248941 citedByCount "10" @default.
- W1256248941 countsByYear W12562489412016 @default.
- W1256248941 countsByYear W12562489412017 @default.
- W1256248941 countsByYear W12562489412018 @default.
- W1256248941 countsByYear W12562489412019 @default.
- W1256248941 countsByYear W12562489412020 @default.
- W1256248941 countsByYear W12562489412021 @default.
- W1256248941 crossrefType "journal-article" @default.
- W1256248941 hasAuthorship W1256248941A5006238145 @default.
- W1256248941 hasAuthorship W1256248941A5010128384 @default.
- W1256248941 hasAuthorship W1256248941A5045067652 @default.
- W1256248941 hasAuthorship W1256248941A5053780153 @default.
- W1256248941 hasAuthorship W1256248941A5071074966 @default.
- W1256248941 hasConcept C11413529 @default.
- W1256248941 hasConcept C124101348 @default.
- W1256248941 hasConcept C154945302 @default.
- W1256248941 hasConcept C2780757406 @default.
- W1256248941 hasConcept C41008148 @default.
- W1256248941 hasConceptScore W1256248941C11413529 @default.
- W1256248941 hasConceptScore W1256248941C124101348 @default.
- W1256248941 hasConceptScore W1256248941C154945302 @default.
- W1256248941 hasConceptScore W1256248941C2780757406 @default.
- W1256248941 hasConceptScore W1256248941C41008148 @default.
- W1256248941 hasFunder F4320321001 @default.
- W1256248941 hasFunder F4320335777 @default.
- W1256248941 hasLocation W12562489411 @default.
- W1256248941 hasOpenAccess W1256248941 @default.
- W1256248941 hasPrimaryLocation W12562489411 @default.
- W1256248941 hasRelatedWork W1568413056 @default.
- W1256248941 hasRelatedWork W1580212682 @default.
- W1256248941 hasRelatedWork W2065436742 @default.
- W1256248941 hasRelatedWork W2065676484 @default.
- W1256248941 hasRelatedWork W2331788134 @default.
- W1256248941 hasRelatedWork W2727889391 @default.
- W1256248941 hasRelatedWork W2789491300 @default.
- W1256248941 hasRelatedWork W3009147976 @default.
- W1256248941 hasRelatedWork W3036609399 @default.
- W1256248941 hasRelatedWork W4311154768 @default.
- W1256248941 hasVolume "89" @default.
- W1256248941 isParatext "false" @default.
- W1256248941 isRetracted "false" @default.
- W1256248941 magId "1256248941" @default.
- W1256248941 workType "article" @default.