Matches in SemOpenAlex for { <https://semopenalex.org/work/W12563217> ?p ?o ?g. }
- W12563217 endingPage "275" @default.
- W12563217 startingPage "193" @default.
- W12563217 abstract "We analyze the linear and nonlinear stage of the instability of a falling liquid film by using the average models developed in Chap. 6. Their linear stability characteristics, e.g. their description of spatially growing disturbances in relation to the convective nature of the instability, are shown to be in good agreement with the Orr–Sommerfeld eigenvalue problem (Chap. 3). By using the average models, the mechanism of the primary instability, already discussed in Chap. 3, is then re-investigated within the framework of the wave hierarchy analysis proposed by Whitham. We emphasize the similarities between roll waves in open channels and solitary waves in film flows at large Reynolds numbers. In particular, two-equation models of film flows have a structure similar to the Saint-Venant equations for shallow-water flows. In both cases, the mechanism of the primary instability can be understood in terms of a wave hierarchy as the competition between kinematic and dynamic waves. We scrutinize the influence of dispersive effects associated with the stream-wise second-order viscous terms, a phenomenon we refer to as “viscous dispersion,” onto the kinematic waves: viscous damping of high-frequency waves reduces the kinematic wave speed which in turn reduces the gap in speed between kinematic and dynamic waves. As far as the nonlinear stage of the dynamics of a falling liquid film is concerned, it is dominated by a competition between the primary instability of the Nusselt flat film flow and the secondary instabilities of the traveling waves with saturated amplitudes. This competition is characterized by a variety of nonlinear processes (e.g., spatial and temporal modulations, phase locking) which are still not fully understood. Applying a periodic forcing at the inlet may regularize the flow, leading further downstream to regular periodic wave-trains whose properties can be obtained using elements from dynamical systems theory. We construct bifurcation diagrams of permanent-form traveling waves including solitary waves. Particular attention is given to the role of stream-wise viscous effects on the properties, such as shape, speed and solution branches of the traveling waves. Taking into account these effects is crucial for a proper description of the dynamics of wavy film flows." @default.
- W12563217 created "2016-06-24" @default.
- W12563217 creator A5028151883 @default.
- W12563217 creator A5061612670 @default.
- W12563217 creator A5084671057 @default.
- W12563217 creator A5087999746 @default.
- W12563217 date "2012-01-01" @default.
- W12563217 modified "2023-10-03" @default.
- W12563217 title "Isothermal Case: Two-Dimensional Flow" @default.
- W12563217 cites W1517289552 @default.
- W12563217 cites W1556059214 @default.
- W12563217 cites W1561892995 @default.
- W12563217 cites W182983404 @default.
- W12563217 cites W1963778330 @default.
- W12563217 cites W1964095254 @default.
- W12563217 cites W1968220940 @default.
- W12563217 cites W1968258229 @default.
- W12563217 cites W1969265236 @default.
- W12563217 cites W1973691715 @default.
- W12563217 cites W1974257020 @default.
- W12563217 cites W1983071525 @default.
- W12563217 cites W1987175675 @default.
- W12563217 cites W1988121763 @default.
- W12563217 cites W1990226714 @default.
- W12563217 cites W1995032459 @default.
- W12563217 cites W1995309682 @default.
- W12563217 cites W2004144079 @default.
- W12563217 cites W2008209896 @default.
- W12563217 cites W2017202144 @default.
- W12563217 cites W2023105070 @default.
- W12563217 cites W2023201442 @default.
- W12563217 cites W2026806559 @default.
- W12563217 cites W2027015056 @default.
- W12563217 cites W2032222730 @default.
- W12563217 cites W2035397598 @default.
- W12563217 cites W2042377097 @default.
- W12563217 cites W2048020918 @default.
- W12563217 cites W2048507853 @default.
- W12563217 cites W2055617900 @default.
- W12563217 cites W2057041104 @default.
- W12563217 cites W2057683997 @default.
- W12563217 cites W2057855801 @default.
- W12563217 cites W2062991748 @default.
- W12563217 cites W2063397879 @default.
- W12563217 cites W2063400189 @default.
- W12563217 cites W2064823050 @default.
- W12563217 cites W2065238351 @default.
- W12563217 cites W2065698652 @default.
- W12563217 cites W2067019352 @default.
- W12563217 cites W2073375747 @default.
- W12563217 cites W2076735336 @default.
- W12563217 cites W2078275278 @default.
- W12563217 cites W2081519565 @default.
- W12563217 cites W2084331371 @default.
- W12563217 cites W2088254080 @default.
- W12563217 cites W2089876099 @default.
- W12563217 cites W2091314510 @default.
- W12563217 cites W2093128034 @default.
- W12563217 cites W2104102786 @default.
- W12563217 cites W2113987496 @default.
- W12563217 cites W2115117229 @default.
- W12563217 cites W2127174168 @default.
- W12563217 cites W2156725666 @default.
- W12563217 cites W2160523063 @default.
- W12563217 cites W2163320880 @default.
- W12563217 cites W2168393226 @default.
- W12563217 cites W3106347117 @default.
- W12563217 cites W4294967943 @default.
- W12563217 doi "https://doi.org/10.1007/978-1-84882-367-9_7" @default.
- W12563217 hasPublicationYear "2012" @default.
- W12563217 type Work @default.
- W12563217 sameAs 12563217 @default.
- W12563217 citedByCount "0" @default.
- W12563217 crossrefType "book-chapter" @default.
- W12563217 hasAuthorship W12563217A5028151883 @default.
- W12563217 hasAuthorship W12563217A5061612670 @default.
- W12563217 hasAuthorship W12563217A5084671057 @default.
- W12563217 hasAuthorship W12563217A5087999746 @default.
- W12563217 hasConcept C121332964 @default.
- W12563217 hasConcept C133347239 @default.
- W12563217 hasConcept C192562407 @default.
- W12563217 hasConcept C38349280 @default.
- W12563217 hasConcept C57879066 @default.
- W12563217 hasConcept C97355855 @default.
- W12563217 hasConceptScore W12563217C121332964 @default.
- W12563217 hasConceptScore W12563217C133347239 @default.
- W12563217 hasConceptScore W12563217C192562407 @default.
- W12563217 hasConceptScore W12563217C38349280 @default.
- W12563217 hasConceptScore W12563217C57879066 @default.
- W12563217 hasConceptScore W12563217C97355855 @default.
- W12563217 hasLocation W125632171 @default.
- W12563217 hasOpenAccess W12563217 @default.
- W12563217 hasPrimaryLocation W125632171 @default.
- W12563217 hasRelatedWork W1969247494 @default.
- W12563217 hasRelatedWork W1980734859 @default.
- W12563217 hasRelatedWork W1986418026 @default.
- W12563217 hasRelatedWork W2079894792 @default.
- W12563217 hasRelatedWork W2892436188 @default.