Matches in SemOpenAlex for { <https://semopenalex.org/work/W126393906> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W126393906 abstract "This thesis is concerned with a class of graphs called partial k-trees. A k-tree is defined recursively as follows: The complete graph K$sb{rm k}$ on k points is a k-tree. Given a k-tree G on n $geq$ k points, a k-tree on n + 1 points is obtained by adding a new point u and edges connecting u to every point of a K$sb{rm k}$ in G. A graph is a partial k-tree if it is a subgraph of some k-tree. Our interest in k-trees and their subgraphs is motivated by some practical questions about the reliability of communication networks. For the reliability analysis, complex systems are often modelled as probabilistic networks. The edges of the network represent components or subsystems. Each of them fails with a given probability. The network reliability problem is to compute a measure of reliability given failure probabilities for the edges. One of the most general network reliability measures is the K-terminal reliability. Specifically, consider a probabilistic network G = (V, E) with the point set V and the edge set E. Let K be a specified subset of V with $vert$K$vertgeq$ 2. The K-terminal reliability R$sb{rm K}$(G) of G is the probability that the points in K are connected. An important special case of this problem is the all-terminal reliability where K is the entire point set of G.In the first part of the thesis, we establish some fundamental properties of partial 3-trees and show that a graph is a partial 3-tree if and only if it has no subgraph contractible to K$sb5$, K$sb{2,2,2}$, C$sb8$(1,4), or K$sb2$ x C$sb5$. A graph G is said to be contractible to a graph H if H can be obtained from G by a sequence of edge contractions. Hither to, such a characterization of partial k-trees is known only for the values of k $leq$ 2.The second part of the thesis is concerned with the all-terminal reliability analysis. This computation of all-terminal reliability of a network is known to be inherently difficult and, except for special cases, cannot be solved in time bounded by a polynomial in the size of the network. We present an efficient algorithm to compute the all-terminal reliability of partial 3-trees. The running time of this algorithm is O($vert$V$vert$) if G is planar partial 3-tree and is O($vert$V$vertsp2$) for nonplanar partial 3-trees." @default.
- W126393906 created "2016-06-24" @default.
- W126393906 creator A5003590594 @default.
- W126393906 date "1988-06-01" @default.
- W126393906 modified "2023-09-23" @default.
- W126393906 title "A characterization of partial 3-trees with applications to network reliability" @default.
- W126393906 hasPublicationYear "1988" @default.
- W126393906 type Work @default.
- W126393906 sameAs 126393906 @default.
- W126393906 citedByCount "0" @default.
- W126393906 crossrefType "journal-article" @default.
- W126393906 hasAuthorship W126393906A5003590594 @default.
- W126393906 hasConcept C105795698 @default.
- W126393906 hasConcept C113174947 @default.
- W126393906 hasConcept C114614502 @default.
- W126393906 hasConcept C118615104 @default.
- W126393906 hasConcept C121332964 @default.
- W126393906 hasConcept C132525143 @default.
- W126393906 hasConcept C163258240 @default.
- W126393906 hasConcept C177264268 @default.
- W126393906 hasConcept C199360897 @default.
- W126393906 hasConcept C33923547 @default.
- W126393906 hasConcept C41008148 @default.
- W126393906 hasConcept C43214815 @default.
- W126393906 hasConcept C49937458 @default.
- W126393906 hasConcept C62520636 @default.
- W126393906 hasConceptScore W126393906C105795698 @default.
- W126393906 hasConceptScore W126393906C113174947 @default.
- W126393906 hasConceptScore W126393906C114614502 @default.
- W126393906 hasConceptScore W126393906C118615104 @default.
- W126393906 hasConceptScore W126393906C121332964 @default.
- W126393906 hasConceptScore W126393906C132525143 @default.
- W126393906 hasConceptScore W126393906C163258240 @default.
- W126393906 hasConceptScore W126393906C177264268 @default.
- W126393906 hasConceptScore W126393906C199360897 @default.
- W126393906 hasConceptScore W126393906C33923547 @default.
- W126393906 hasConceptScore W126393906C41008148 @default.
- W126393906 hasConceptScore W126393906C43214815 @default.
- W126393906 hasConceptScore W126393906C49937458 @default.
- W126393906 hasConceptScore W126393906C62520636 @default.
- W126393906 hasLocation W1263939061 @default.
- W126393906 hasOpenAccess W126393906 @default.
- W126393906 hasPrimaryLocation W1263939061 @default.
- W126393906 hasRelatedWork W1506174464 @default.
- W126393906 hasRelatedWork W1679848521 @default.
- W126393906 hasRelatedWork W1755433030 @default.
- W126393906 hasRelatedWork W1973847820 @default.
- W126393906 hasRelatedWork W1976459503 @default.
- W126393906 hasRelatedWork W2013965337 @default.
- W126393906 hasRelatedWork W2024747753 @default.
- W126393906 hasRelatedWork W2043428092 @default.
- W126393906 hasRelatedWork W2050873015 @default.
- W126393906 hasRelatedWork W2078521722 @default.
- W126393906 hasRelatedWork W2082296423 @default.
- W126393906 hasRelatedWork W2093455937 @default.
- W126393906 hasRelatedWork W2109384905 @default.
- W126393906 hasRelatedWork W2133537273 @default.
- W126393906 hasRelatedWork W2139547379 @default.
- W126393906 hasRelatedWork W2184699441 @default.
- W126393906 hasRelatedWork W2963282726 @default.
- W126393906 hasRelatedWork W747963869 @default.
- W126393906 hasRelatedWork W1809597216 @default.
- W126393906 hasRelatedWork W2184658490 @default.
- W126393906 isParatext "false" @default.
- W126393906 isRetracted "false" @default.
- W126393906 magId "126393906" @default.
- W126393906 workType "article" @default.